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1 Introduction

The calculation of scattering matrices in supersymmetric gauge theories has seen significant
recent progress. Exciting new insights, such as connections between scattering amplitudes
and Wilson loops [1, 2, 3, 4, 5], and the discovery of novel hidden symmetries, namely dual
superconformal invariance [6, 7], have led to a deeper understanding of the gauge theory.
Many of these results have been possible because of the development of powerful new tools,
such as twistor methods [8], recursion relations [9, 10] and generalized unitarity [11, 12, 13,
14], for calculating on-shell quantities in Yang-Mills theories. Further, in the specific case of
maximally supersymmetric four-dimensional N = 4 Yang-Mills theory (YM) the existence
of a string dual has provided a tractable strong-coupling description and has resulted in
several impressive results and conjectures, for a recent review of the subject see [15].

It is interesting to see if one can extend these results to a broader class of theories
particularly those with less supersymmetry. One such class is the N ≥ 4 supersymmetric
Chern-Simons (SCS) matter theories constructed by Hosomichi et al. (HLLLP) in [16,
17] which builds upon the construction of Gaiotto and Witten [18]. In the construction
of Gaiotto and Witten, the gauge group was chosen to be a particular subgroup of the
symplectic group Sp(2n), with no particular restrictions imposed on the representations
of the matter fields and where there is an su(2) × su(2) = so(4) R-symmetry which is
required for the N = 4 supersymmetry. In [16, 17], the matter content was augmented
by twisted hypermultiplets where the action of the su(2)’s on the bosonic and fermionic
degrees of freedom is interchanged relative to the untwisted case. In the absence of further
constraints on the representations of the two matter multiplets, this construction also
results in N = 4 supersymmetry. It was further shown that if both matter multiplets are
in the same representation the supersymmetry extends to N = 5. In the special case,
where the representations of the matter multiplets can be decomposed into a complex
representation and its conjugate, such as bifundamental representations of SU(N)×SU(M),
the supersymmetry was shown to be enhanced to N = 6. When the representations are
furthermore real corresponds to N = 8.

– 1 –
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The theories with N = 6 and 8 had been previously found in the context of the low
energy effective action of multiple membranes by Bagger, Lambert, Gustavsson (BLG) and
Aharony, Bergman, Jafferis, Maldacena (ABJM) [19, 20]. TheN = 6 theory, of which there
is an infinite SU(N)× SU(N) family [20], has been conjectured for finite values of N and
k, the Chern-Simons level number, to describe the low energy dynamics of N M2 branes
on R1,2 × C4/Zk. The gauge theory also possesses a well defined large N limit, which is
obtained by taking both N and k to be large while λ = N/k is held fixed. In this limit, the
theory is expected to be dual to string theory on AdS4×CP3, which shares many similarities
with the well studied case of string theory on AdS5×S5. Indeed, the conformal N = 6 SCS
gauge theory also shares some vital qualitative features with its four dimensional N = 4
YM counterpart, including the fact that its spectrum at weak coupling is described by an
integrable quantum spin chain [21]. Furthermore, for the N = 4 Yang-Mills theory the
planar integrability, which may be thought of as feature of the ‘world sheet physics’ of
the gauge theory, is intimately tied to dual superconformal symmetry: a property of the
spacetime scattering matrix of the gauge theory [22, 23]. It is interesting to ask if similar
relationships and structures appear in the N = 6 Chern-Simons scattering amplitudes.

With these motivations in mind, we explore the scattering amplitudes for a class of
SCS theories with N ≥ 4 supersymmetry which includes the N = 6 and 8 theories as
special cases. In fact we will study the supersymmetry preserving massive deformations
of the 4 ≤ N ≤ 8 superconformal theories. For this there are several independent and
equally important reasons. The mass-deformed theories are natural generalizations that
subsume the superconformal SCS theories as special cases. Since this is the largest class
of SCS theories that can be analyzed with the methods that we use in the paper, we shall
choose to study the massive models rather than their conformal limits. Other than reasons
of generality, the massive models also enable us to have well defined asymptotic scattering
states and the infra-red divergences associated with the on-shell external particles are
regularized (the infra-red divergences due to the Chern-Simons gauge field remain and
are treated, where necessary, separately). Finally, introducing the mass-deformation gives
rise to the supergroup PSU(2|2) as part of the space-time symmetry. This provides an
interesting parallel with the spin-chain/world-sheet S-matrix that appeared in the recent
computation of the planar spectrum of the single trace operators in N = 4 SYM and,
relatedly, in the one-dimensional Hubbard model.

As in the study of most conformal field theories, the three dimensional SCS models
are plagued with problems of infra-red divergences, which typically manifest themselves in
the collinear and low momentum behavior of massless propagators. One might hope that
such problems can be remedied by making the theory massive. In extended supersymmetric
gauge theories, making the dynamical matter fields massive is impossible to achieve without
violating some or all the supersymmetries of the massless cases. However, in the special case
of superconformal Chern-Simons models, it is indeed possible to add masses to the matter
fields while preserving all the supersymmetries of the massless models, at the cost of losing
(super)conformal invariance. This was established for N ≥ 4 SCS theories in [16, 17] and in
previous work for the mass-deformation of the N = 8 M2 brane theory, [24] (more recent
analyses of the mass deformations of SCS and M2 brane theories theory can be found
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in [25, 26]). Unfortunately, the only degree of freedom contributed by the gauge filed,
namely its zero mode, does lead to residual mild infra-red divergences: These divergences
are apparent in the amplitudes when the momenta of two external states become coincident
and the propagator of an internal gluon becomes singular. The main difference to massless
models is the absence of collinear divergences which have a larger phase space. The infra-
red divergences in our massive model are thus of a mild nature. To the order at which we
carry out the computations in this paper, these additional potential divergences are largely
irrelevant, see section 6.4, however we expect them to play in important role at higher
orders in perturbation theory, and elaborate upon this issue later in the paper.

Rendering the SCS theories massive amounts to adding non-central extensions of the
supersymmetry algebras, which generically take on the form {Q,Q} ∼ P+mR: R denoting
the internal symmetry generators. The massive theories that we study, typically have the
mass deformed Poincaré algebras [26]

SL(2,R) n PSU(2|2) n R3 (1.1)

or
SL(2,R) n PSU(2|2)2 n R3 (1.2)

as their underlying symmetries which are among the exceptional super-Poincaré algebras
discussed in [27]. The appearance of the mass m in the supersymmetry algebra adds a
new parameter to the theory. Being part of the fundamental anti-commutation relations
of the supercharges, prevents the mass from ‘running’, in the sense of renormalization
group flows. One may be tempted to view the mass-deformed theories as a one parameter
family of models extending each of the conformal N ≥ 4 SCS theories, to which they
reduce in the massless limit. However, note that m is the only mass scale in the theory
and thus all models which differ only in m only are expected to be related by an overall
rescaling of dimensionful quantities. In this sense the massless limit is singular and it
involves enhancement to superconformal symmetry. For physical quantities the limit may
nevertheless be smooth as we shall observe in this paper. Still one has to keep in mind
that the IR singular behavior of some quantities may be different in the limit and one has
to replace the mass by an alternative IR regulator.

It is worth noting that these massive supersymmetry algebras have played an important
role in a number of recent studies of supersymmetric gauge theories. For instance, in the
case of N = 4 supersymmetric Yang-Mills theory in four dimensions, su(2|2) played a
crucial role as the symmetry of the scattering matrix [28] of the spin chain describing the
planar limit of the gauge theory [29]. It was shown that the symmetry algebra uniquely
fixes the spin chain scattering matrix up to an overall prefactor. This S-matrix is, by
the AdS/CFT correspondence, the worldsheet S-matrix for the dual string theory [30, 31]
but it was also shown that it is equivalent to Shastry’s R-matrix for the one-dimensional
Hubbard model [32]. In the case of the spin chain, the sl(2) automorphism of its symmetry
algebra, does not translate into a real symmetry of the system, as the quantum spin chain
is not relativistically invariant. As was pointed out in [33, 30], the su(2|2) in conjunction
with its sl(2) automorphism, is nothing but a mass-deformed supersymmetric extension of
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the three dimensional Lorentz algebra. From the point of view of the three dimensional
algebra, the non-Lorentz invariance implies that the physical spectrum of the spin chain
corresponds to a preferred reference frame, see [30].

Various other interesting supersymmetric three dimensional Yang-Mills theories with
mass deformed super-Poincaré algebras as their symmetries have also recently been stud-
ied. In particular, the D2 brane worldvolume theory, namely, N = 8 super Yang-Mills
on R × S2 and its spectrum was studied in [33].1 In the same paper, supersymmetric
Yang-Mills Chern-Simons theories, with various degrees of supersymmetry, were also for-
mulated. A salient feature of these gauge theories is that they have massive spectra, as
well as propagating gluonic degrees of freedom. The gluons are rendered massive by either
requiring the spacial geometry to be S2, or by introducing Chern-Simons terms in their
actions. In this regard, the theories studied in the present paper depart substantially from
the examples of the super Yang-Mills theories mentioned above. In our case, there are no
propagating gluons, the ‘gauge’ part of the theories being described by pure Chern-Simons
terms. Furthermore, the spacial part of the geometries underlying the gauge theories will
be taken to be R2.

In this paper, we study the 2 ↔ 2 scattering processes in all the massive SCS theo-
ries mentioned above. One of the main observations is that, as in the case of scattering
processes in the spin chain corresponding to N = 4 Yang-Mills theory in four dimensions,
the matrix structure of the two particle (spacetime) scattering matrix is completely fixed
by supersymmetry. For pure N = 4 SCS theories, without twisted hypermultiplets, this
means that relevant scattering matrix is completely determined by supersymmetry up to
a single undetermined function. Indeed the scattering matrix for the Chern-Simons theory
is formally identical to the spin chain S-matrix. For the more general case of mixed N = 4
supersymmetry, i.e. SCS theories with twisted hypermultiplets, supersymmetry leaves one
with three undetermined functions. As shown later in the paper, supersymmetry enhance-
ment to 5 ≤ N ≤ 8 can be obtained by imposing suitable constraints on the mixed N = 4
theories. The number of undetermined functions reduces from three to two or one upon
supersymmetry enhancement. Importantly, being a direct consequence of the supersym-
metry algebra, the structure of the scattering matrix derived in this fashion is expected
to hold to all orders in perturbation theory.2 This result has a parallel in the spacetime
scattering matrix of N = 4 super Yang-Mills theory in four dimensions, where all the four
particle scattering matrix elements can be determined in terms of a single function [34].

Apart from establishing the matrix structure of the scattering matrix, we compute
the undetermined functions for the mass-deformed SCS theories at the tree and one-loop
level. The perturbative calculations also lead to independent checks that the relations
between the various elements of the scattering matrix predicted by supersymmetry are
indeed satisfied. We compute the one-loop correction to the scattering matrix in two

1This theory can be viewed as a dimensional reduction of N = 8 super Yang-Mills on R× S3 to R× S2

2We should point out that divergences in scattering amplitudes may potentially deform the supersymme-

try transformation laws in analogy to what happens for conformal theories. For example, the supersymmetry

algebra requires the dimension of spacetime to be exactly three, while in dimensional regularization it is

3− 2ε. Subleading terms in the ε expansion may not have the same structure.
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different ways, i.e. by the use of standard Feynman rules as well as by using unitarity. As
is well known, perturbative corrections to scattering amplitudes can be computed efficiently
by ‘gluing’ lower order amplitudes together using relations derived from unitarity. However,
in principle this only determines the piece of the amplitude with branch cuts and so suffers
from the ‘polynomial ambiguity’ whereby there are undetermined rational functions of the
kinematical variables. We demonstrate explicitly, by calculating specific elements using
standard off-shell methods, that the amplitudes can indeed be completely evaluated using
the discontinuities across the cuts of the integrands, and that there are no rational functions
unrelated to terms with branch cuts. We then use this simplifying feature to compute all the
two particle scattering matrix elements, at the one loop order, using unitarity. Interestingly,
while our calculations yield non-trivial one loop corrections to the two particle scattering
matrix of N = 4 SCS theories, with or without additional hypermultiplets, we find that
all such corrections vanish identically for the cases of N ≥ 5 supersymmetry.

The paper is organized as follows. In section 2 we elaborate upon the realization of
extended supersymmetry algebras and their mass-deformations in supersymmetric Chern-
Simons theories. In particular, we discuss the realization on the supersymmetry algebra
on the asymptotic/scattering states of the gauge theories in question. We also introduce a
particular basis for spinors in three dimensions that closely resembles the often employed
spinor-helicity basis in the case of four dimensional theories. Following this discussion,
section 3, we set-up the four particle scattering picture in terms of the asymptotic states
and derive the constraints imposed upon the scattering matrix elements by supersymme-
try. We show that the constraints can be solved, leading to a complete determination
of the matrix structure of the 2 ↔ 2 scattering matrix of all the massive N ≥ 4 SCS
theories. Further, the explicit correspondence between two-dimensional worldsheet/spin
chain scattering matrix and the Chern-Simons S-matrix is described. Section 4 is devoted
to the analysis of color structure of the scattering amplitudes, which is left unspecified in
the sections outlined above. Specifically, we focus on the interpretations of color ordering
and planarity, while leaving the choice of the gauge group to be as general as possible.
In the final two sections, section 5 and section 6, perturbative calculations that verify the
predictions of the supersymmetry algebra as well as compute the unspecified functions at
the tree and one-loop order, are presented. As mentioned before, the perturbative com-
putations are carried out using both Feynman rules as well as unitarity methods whose
one-loop validity is thus established. We end the paper with an elaborate appendix, where
most of the details relevant to the Lagrangian formulation of the massive SCS theories as
well as useful details regarding the supersymmetry algebra are contained.

2 Supersymmetry and asymptotic states

2.1 Extended supersymmetry in Chern-Simons theories

Let us start with a brief review of N ≥ 4 supersymmetry in three-dimensional quantum
field theory coupled to a Chern-Simons gauge field.

The study of the conformal case with OSp(N|4,R) symmetry was initiated for N = 4
supersymmetry in [18]; it was extended to include additional twisted matter and N = 5, 6

– 5 –



J
H
E
P
0
6
(
2
0
0
9
)
0
4
5

N0 N1 N2 N3 N4
N1 N2

Figure 1. The quiver structure of a generic N = 4 Chern-Simons theory with unitary gauge
groups (left) and of a N = 5, 6, 8 Chern-Simons theory (right). The solid and double lines represent
untwisted and twisted matter, respectively. The circles represent gauge groups U(Nk) and gauge
fields.

supersymmetry by [16, 17]. This is in addition to the very many earlier and parallel
developments in the N = 6, 8 case briefly described earlier [20, 19, 35]. It was shown that
there is a correspondence between the permissible field content of such a model and the
classification of Lie superalgebras: In general, the even part of the superalgebra specifies
the gauge symmetry for the Chern-Simons fields while the odd part specifies the matter
content. For N ≥ 5 supersymmetry there is only one type of matter multiplet and a simple
Lie superalgebra fixes the model completely. For N = 4 supersymmetry, however, there are
two types of matter multiplets, so-called untwisted and twisted hypermultiplets. The field
content in each of the two matter sectors is specified by a semi-simple Lie superalgebra. The
even part of the two superalgebras must coincide in order for the Chern-Simons sector to be
defined consistently. In particular, this leads to certain quivers of simple Lie superalgebras,
see [16, 17]. The general structure of these quivers is illustrated in figure 1 for the example
of unitary gauge groups: Considering only the untwisted matter fields one finds a direct
sum of superalgebras su(N2k−1|N2k). Likewise the twisted matter fields define a direct
sum of superalgebras su(N2k|N2k+1). For orthosymplectic superalgebras the nodes must
alternate between orthogonal and symplectic algebras.3 Globally, the alternating chain of
nodes can be either open or closed. If the odd parts of the Lie superalgebras coincide as
well, the supersymmetry enhances to N ≥ 5. This is equivalent to a closed quiver of length
2, see figure 1.

For N ≥ 5 supersymmetry the level N merely depends on which particular basic Lie
superalgebra the model is based upon. The cases are summarized as follows

osp(n|2m)
d(2, 1;α)

g(3)
f(4)

N = 5,
sl(n|m)

osp(2|2m)

}
N = 6, psl(2|2) : N = 8. (2.1)

The representation of the even part on the odd part distinguishes the three types of super-
algebras: An irreducible representation leads to N = 5 supersymmetry. If it can be reduced
into two conjugate representations supersymmetry enhances to N = 6. If furthermore the
two representations are isomorphic we obtain N = 8 supersymmetry.

This classification can be translated into a classification of continuous automorphisms
of the superalgebras. The psl(2|2) superalgebra is the only superalgebra with an Sp(1)

3There may also be some more exotic quivers using bosonic algebras of lower rank which may allow to

switch between the orthosymplectic and unitary series. We also do not consider explicitly the u(1) factors

which are present in the unitary superalgebras su(N |M), see [16] for more details.
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outer automorphism. For sl(n|m) and osp(2|2m) there exist U(1) automorphisms whose
action coincides with the gl(1) and so(2) parts of the superalgebra, respectively. The
remaining basic superalgebras have no continuous outer automorphisms.4 The classification
in terms of automorphisms is natural when one views N -extended supersymmetry from
the point of view of N = 4 supersymmetry: When breaking OSp(N|4,R) to manifest
OSp(4|4,R) notation there must be an additional SO(N − 4) flavor symmetry. For N = 5
this requires no automorphism while for N = 6 the required automorphism is SO(2) '
U(1). Finally, for N = 8 we need an SO(4) ' Sp(1)×Sp(1) automorphism. Each of the two
psl(2|2) superalgebras provides one copy of Sp(1). Here one could also consider a manifest
OSp(5|4,R) notation where the single psl(2|2) superalgebra provides the SO(N − 5) =
SO(3) ' Sp(1) automorphism.

Let us now turn to the massive case, which was investigated in [16, 17] (see [24, 25, 26]
for related work particularly in the context of massive M2-brane theories). There appears to
be a one-to-one correspondence between the massive and conformal N ≥ 4 supersymmetric
Chern-Simons theories; for each conformal model there is a mass deformation with the same
amount of supersymmetry and for each massive model there is a conformal limit. The only
additional parameter in the massive models is one overall mass scale m. The classification
in terms of superalgebras remains the same. This result is somewhat curious because the
massive models preserve less bosonic and only half of the fermionic symmetry and might,
in principle, be less restrictive. We define the general mass-deformed N = 4 Chern-Simons
theory in appendix B.

In the massive case, the bosonic spacetime symmetry reduces to the Poincaré group
SL(2,R) n R3. Supersymmetry will be specified by some supergroup G which enters the
full super-Poincaré algebra as SL(2,R) n G n R3. This means that the Lorentz algebra
SL(2,R) acts as an automorphism on G and that the algebra of supercharges closes onto
the momenta R3. For N = 4 supersymmetry the internal bosonic symmetry is SO(4). It
joins with the supersymmetry generators into the supergroup G = PSU(2|2). Altogether
the mass-deformed N = 4 super-Poincaré group is (1.1)

SL(2,R) n PSU(2|2) n R3. (2.2)

It is one of the exceptional cases of super-Poincaré algebras discussed in [27]. It is ex-
ceptional, because the supercharges close not only onto the momentum generators, but
also onto the internal symmetries. This type of closure of spacetime supersymmetry is
otherwise known only from the superconformal cases. Here it requires the introduction of
a mass scale m to give the relation {Q,Q} ∼ P +mR a consistent dimension.

For N ≥ 5 supersymmetry the supergroup G splits into two pieces, G = GA × GB

with GA = PSU(2|2) and GB a supergroup of odd dimension 2(N − 4). The Lorentz group
SL(2,R) must act on GB as an automorphism and GB must close onto the momenta R3.
The three cases are given by GB = GN−4 with

G1 = R0|2, G2 = U(1) n PSU(1|1)2 n U(1), G4 = PSU(2|2). (2.3)

4One can thus identify the three types of superalgebras in (2.1) with the fields R,C,H, respectively.
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We shall discuss the associated superalgebras in more detail below. Here the role of the
automorphisms of the superalgebra defining the field content is even more evident: They
serve as the even part of GN−4. For N = 6 the two U(1) automorphisms appear in G2

while for N = 8 the two Sp(1) automorphism are equivalent to the two SU(2) factors in
G4.5 The supergroup G2 resembles G4 in that the mass appears in the anticommutation
relation {Q,Q} ∼ P + mR. However, this particular U(1) generator will commute with
the remaining algebra unlike what happens in G4. Conversely, the supergroup G1 is almost
trivial and the mass does not appear there.

Our main concern in this paper will be the case of N = 4 supersymmetry where the
super group is a single copy of G4. Let us nevertheless close this part with some remarks
on N ≤ 4. There appears to be the possibility of combining any two of the superalgebras
G1,2,4. For instance there could in principle be a massive N = 4 supersymmetric model
which preserves only G2 ×G2 instead of G4. In fact the former is a subgroup of the latter
and thus one can expect it to be less constraining. In the massless limit, however, both
types of modes would result in the same supergroup OSp(4|4,R).

2.2 Mass-deformed N = 4 super-Poincaré algebra

The mass-deformed D = 3, N = 4 super-Poincaré algebra of (2.2) consists of the bosonic
Poincaré generators Lαβ = Lβα, Pαβ = Pβα, the internal su(2) ⊕ su(2) generators Rab =
Rba, Ṙȧḃ = Ṙḃȧ and eight supercharges Qαbċ. The Lorentz and internal algebra is specified
by its action on spinor indices (|X...〉 denotes any state with the indicated indices)

Lαβ|Xγ〉 =
1
2
εβγ |Xα〉+

1
2
εαγ |Xβ〉,

Rab|Xc〉 =
i

2
εbc|Xa〉+

i

2
εac|Xb〉,

Ṙȧḃ|Xċ〉 =
i

2
εḃċ|Xȧ〉+

i

2
εȧċ|Xḃ〉. (2.4)

It remains to specify the anticommutator of supercharges

{Qαbċ,Qδeḟ} = εbeεċḟPαδ − 2mεαδεċḟRbe + 2mεαδεbeṘċḟ . (2.5)

In addition to the standard momentum generator Pαδ it contains the internal rotation
generators Rbe and Ṙċḟ which otherwise only appear in superconformal algebras. These
dimensionless generators are multiplied by a common mass m for the correct mass dimen-
sion. The constant m is physical and it sets the mass scale of this model. Due to its
appearance in the supersymmetry algebra it is protected from running.

For completeness we shall write the reality conditions of the generators in the relevant
real form of the supersymmetry algebra. For the sl(2) Lorentz and su(2) ⊕ su(2) internal
rotations we require

(Lαβ)∗ = Lαβ, (Rab)∗ = εacεbdRcd, (Ṙȧḃ)
∗ = εȧċεḃḋṘċḋ. (2.6)

5It is curious to observe that mass-deformed N = 8 Chern-Simons theory is, in some sense, constructed

upon four copies of the superalgebra PSU(2|2).
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The supersymmetry and momentum generators obey

(Qαbċ)∗ = −εbdεċėQαdė, (Pαβ)∗ = Pαβ. (2.7)

2.3 N = 4 asymptotic particle representation

We can now turn to the transformation properties of the asymptotic particles. These
particles can belong to any D = 3 quantum field theory whose spacetime symmetry is the
above mass deformed N = 4 super-Poincaré algebra. We assume that the particles are
on shell, gauge-invariant and do not interact. In particular, this means that the action of
the supercharges is linear (i.e. the symmetry is not spontaneously broken) and that the
supersymmetry algebra closes exactly without additional gauge terms or terms proportional
to the equations of motion. In particular it applies to the mass-deformed N = 4 Chern-
Simons theories outlined in appendix B at arbitrary coupling. At weak coupling it is
furthermore safe to identify the asymptotic particles with the fields.

For a fixed time-like momentum pαβ = pµσ
µ
αβ, the stabilizer of the mass-deformed

super-Poincaré algebra is u(2|2). The smallest non-trivial particle multiplet thus corre-
sponds to the (anti) fundamental representation of u(2|2) consisting of two bosons and two
fermions. On shell these can be identified with the (twisted) hypermultiplets of massive
N = 4 super Chern-Simons theory:

(untwisted) hypermultiplet: |φa〉, |ψȧ〉, twisted hypermultiplet: |φ̃ȧ〉, |ψ̃a〉. (2.8)

These both transform under su(2)⊕ su(2) according to the general rule (2.4) but we note
that the roles of the two different su(2) indices are switched in the twisted case relative to
the untwisted case. The most general representation of the supercharges on the hypermul-
tiplets compatible with su(2)⊕ su(2) symmetry is given by

Qαbċ|φd〉 = εbduα|ψċ〉, Qαbċ|φ̃ḋ〉 = εċḋvα|ψ̃b〉,
Qαbċ|ψḋ〉 = εċḋvα|φb〉, Qαbċ|ψ̃d〉 = εbduα|φ̃ċ〉. (2.9)

Closure of the supersymmetry algebra (2.5) implies the constraint

vαuβ = −pαβ − imεαβ. (2.10)

Note that (uα, vα) and (vα, uα) are effectively the incoming/outgoing polarizations for the
massive spinors ψ and ψ̃, cf. the oscillator representation of free fermions in (B.15).

The mass of the asymptotic particles is constrained by the atypicality condition of the
fundamental representation of u(2|2) to equal the mass m appearing in the supersymmetry
algebra (2.5). In particular, this implies that the mass of the hypermultiplets cannot run
in this model.6

Let us investigate the relation (2.10) in some more detail. It implies that the particle
momentum pαβ = pµσ

µ
αβ is a function of the spinors uα and vα. Therefore the represen-

tation of the stabilizer is specified through a pair of spinors (uα, vα) obeying the constraint

εαβvαuβ = −2im. (2.11)
6Depending on the renormalization scheme the bare and physical masses can differ by a finite amount.
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The solutions of this constraint form the three-dimensional group manifold SL(2). Con-
versely, the mass shell in three dimensions is merely the two-dimensional hyperbolic space
H2 = SL(2)/U(1). Thus representations of the little supersymmetry algebra carry one
additional U(1) label as compared to the bosonic subalgebra. This label can be adjusted
by changing phases of the spinors

uα → e+iαuα, vα → e−iαvα, (2.12)

which does not change the relations (2.10), (2.11). In (2.9) it can be seen to determine
the relative phase between the bosons and fermions. The U(1) degree of freedom turns
out to be inessential and it can in principle be fixed by restricting to a particular choice of
phase u(p), v(p) for each momentum p, e.g. (A.9). This is possible because the mass shell is
topologically trivial and there is no global obstruction in choosing a U(1) element at each
point of the SL(2)/U(1). Nevertheless, it is not always advisable to do this for two reasons:
The spinors u(p), v(p) are not covariant under Lorentz transformations, they are merely
covariant up to phase. Secondly, it is sometimes convenient to complexify momenta. This
however leads to a non-trivial topology of the above U(1) fibration and there is no globally
consistent choice u(p), v(p). In particular, this leads to potential sign ambiguities if one
tries to define the spinors u(p), v(p) for the two mass shells with positive and negative
energies with a single analytic formula. Therefore we prefer to specify representations
through the spinors u, v. However, in particular if the sign of the particle energy p0 is
well-known, it is safe to specify the spinors through the particle momentum p as in (A.9).

Finally we would like to discuss unitarity conditions of the representation. Ac-
cording to (2.7) and (2.9) hermiticity of the supersymmetry generators implies the
unitarity condition

u∗α = +vα. (2.13)

This also leads to a real momentum pµ according to (2.10). Moreover, the energy p0 is
positive definite as usual in supersymmetry algebras. Conversely, particle multiplets with
negative energy obey

u∗α = −vα (2.14)

and they transform in a graded unitary representation where all bosonic generators are
hermitian and the supercharges are anti-hermitian.

The two types of representations discussed above are just the simplest non-trivial
representations of the mass-deformed N = 4 super-Poincaré group (2.2). The represen-
tation theory follows closely the one of su(2|2), cf. [32] and references therein: There are
short/atypical representations 〈k, l〉 of dimension 4(k+ 1)(l+ 1) + 4kl. The corresponding
particles have an algebraically fixed mass m = k+ l+ 1. The fundamental representations
discussed above are the special case 〈0, 0〉. Additionally there are long representations
{k, l} of dimension 16(k+ 1)(l+ 1). Their mass is unconstrained.7 It would be interesting
to study the spectrum of composite states in supersymmetric Chern-Simons theories.

7If one picks the particular value m = k + l + 2, however, the representation reduces to 〈k + 1, l〉 and

〈k, l + 1〉. In other words, one can combine two particle multiplets 〈k + 1, l〉 and 〈k, l + 1〉 to form a long

multiplet whose mass is henceforth unconstrained in close analogy to the Higgs mechanism.
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2.4 N = 5, 6, 8 supersymmetry and multiplets

Let us also discuss the algebras and representations for N = 5, 6, 8 supersymmetry. This
is applicable to Chern-Simons theories with coinciding representations for untwisted and
twisted matter (see appendix B) which have manifest N = 5, 6, 8 supersymmetry. In
general the higher supersymmetries anticommute with the N = 4 supercharges and thus
they have to transform between untwisted and twisted N = 4 hypermultiplets.

In the simplest N = 5 case there are two additional supercharges Q̃α. Their algebra
g1 closes onto the momentum generators

{Q̃α, Q̃δ} = 2Pαδ. (2.15)

The additional supercharges Qα must act like

Q̃α|φb〉 = +vα(p)|ψ̃b〉, Q̃α|ψḃ〉 = −vα(p)|φ̃ḃ〉,
Q̃α|ψ̃b〉 = −uα(p)|φb〉, Q̃α|φ̃ḃ〉 = +uα(p)|ψḃ〉. (2.16)

For N = 6 supersymmetry the additional algebra g2 consists of four supersymmetries
Q̃±α and two bosonic generators B̃ and C̃. Their non-trivial commutation relations are

[B̃, Q̃±α ] = ±Q̃±α , {Q̃+
α , Q̃

−
β } = Pαβ − imεαβC̃. (2.17)

There are two types of multiplets with opposite eigenvalue of the central charge C̃. For
C̃ ' −1 the action of the supercharges reads

Q̃+
α |φb−〉 = +vα(p)|ψ̃b−〉, Q̃+

α |ψḃ−〉 = −vα(p)|φ̃ḃ−〉,
Q̃−α |ψ̃b−〉 = −uα(p)|φb−〉, Q̃−α |φ̃ḃ−〉 = +uα(p)|ψḃ−〉,
Q̃+
α |ψ̃b−〉 = 0, Q̃+

α |φ̃ḃ−〉 = 0,

Q̃−α |φb−〉 = 0, Q̃−α |ψḃ−〉 = 0. (2.18)

The action on the conjugate multiplet with C̃ ' +1 reads

Q̃−α |φb+〉 = +vα(p)|ψ̃b+〉, Q̃−α |ψḃ+〉 = −vα(p)|φ̃ḃ+〉,
Q̃+
α |ψ̃b+〉 = −uα(p)|φb+〉, Q̃+

α |φ̃ḃ+〉 = +uα(p)|ψḃ+〉,
Q̃−α |ψ̃b+〉 = 0, Q̃−α |φ̃ḃ+〉 = 0,

Q̃+
α |φb+〉 = 0, Q̃+

α |ψḃ+〉 = 0. (2.19)

In supersymmetric Chern-Simons theories the splitting into the C̃ ' ±1 multiplets origi-
nates from the structure of the superalgebra which defines the field content, cf. section 2.1.

Finally, for N = 8 supersymmetry there is a complete copy the the N = 4 superalgebra
g4 consisting of the generators R̃ãb̃, R̂âb̂ and Q̃αb̃ĉ. The su(2) ⊕ su(2) generators act on
spinor indices as usual

R̃ãb̃|Xc̃〉 =
i

2
εb̃c̃|Xã〉+

i

2
εãc̃|Xb̃〉,

R̂âb̂|Xĉ〉 =
i

2
εb̂ĉ|Xâ〉+

i

2
εâĉ|Xb̂〉. (2.20)
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φa

φ̃ȧ

ψȧ

ψ̃a

Q̃

Q

Q̃

Q

φa−

φ̃ȧ−

ψȧ−

ψ̃a−

Q̃+ Q̃−

Q

Q̃−Q̃+

Q

φa+

φ̃ȧ+

ψȧ+

ψ̃a+

Q̃− Q̃+

Q

Q̃+Q̃−

Q

φab̂

φ̃ȧb̃

ψȧb̂

ψ̃ab̃

Q̃

Q

Q̃

Q

Figure 2. The action of the extended N = 5, 6, 8 supersymmetries (left, middle two, right) on
one-particle asymptotic states.

Furthermore the supercharges obey the same relation as above

{Q̃αb̃ĉ, Q̃δẽf̂} = εb̃ẽεĉf̂Pαδ − 2mεαδεĉf̂ R̃b̃ẽ + 2mεαδεb̃ẽR̂ĉf̂ . (2.21)

The representation on the fields is much like the one discussed in section 2.3

Q̃αb̃ĉ|φdê〉 = +εĉêvα(p)|ψ̃db̃〉, Q̃αb̃ĉ|ψḋê〉 = −εĉêvα(p)|φ̃ḋb̃〉,
Q̃αb̃ĉ|ψ̃dẽ〉 = +εb̃ẽuα(p)|φdĉ〉, Q̃αb̃ĉ|φ̃ḋẽ〉 = −εb̃ẽuα(p)|ψḋĉ〉. (2.22)

Again, the additional indices ê and ẽ on the untwisted and twisted multiplets, respectively,
originate from the structure of the defining superalgebra.

Note that U(N) × U(N) N = 6 Chern-Simons models at levels k = 1 or k = 2
are expected to have N = 8 enhanced supersymmetry [20]. This may appear impossible
considering that the Sp(1) automorphism required for N = 8 supersymmetry cannot act on
a singleN = 6 particle representation. Here one has to bear in mind that the points k = 1, 2
are strongly coupled. Particles can bind to disorder operators of rank k + k to effectively
double the set of fundamental particles [20]. On these pairs the Sp(1) automorphism
can act.

To conclude, we summarize the action of the N = 5, 6, 8 supersymmetry generators Q

and Q̃ on the untwisted and twisted hypermultiplets in figure 2.

3 Scattering amplitudes from supersymmetry

In this section we shall derive the form of scattering amplitudes by means of supersymmetry
and compare these predictions to field theory calculations.

3.1 Pure scattering

We will now set up the amplitudes for a scattering process of four hypermultiplets. The
processes described here account for scattering of purely untwisted hypermultiplets in mod-
els with N ≥ 4 supersymmetry. We assume that all four particle momenta pk, k = 1, 2, 3, 4,
are incoming and on shell. The polarization spinors (uk, vk) are on-shell according to (2.10).

The amplitudes will be represented by an operator 〈T | acting on four-particle states
and returning the corresponding amplitude8

〈T |1234〉 = A1234. (3.1)
8Alternatively we may give an invariant four-particle state or an invariant two-to-two scattering operator,

cf. section 3.5.
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The most general ansatz for the scattering matrix elements with manifest su(2) ⊕ su(2)
symmetry reads

〈T |φaφbφcφd〉 =
(

+
1
2

(A+B)εadεbc +
1
2

(A−B)εacεbd

)
δ3(p1 + p2 + p3 + p4),

〈T |ψȧψḃψċψḋ〉 =
(

+
1
2

(D + E)εȧḋεḃċ +
1
2

(D − E)εȧċεḃḋ

)
δ3(p1 + p2 + p3 + p4),

〈T |φaψḃφcψḋ〉 = −Gεacεḃḋ δ
3(p1 + p2 + p3 + p4),

〈T |ψȧφbψċφd〉 = −Lεȧċεbd δ3(p1 + p2 + p3 + p4),

〈T |φaφbψċψḋ〉 = −1
2
Cεabεċḋ δ

3(p1 + p2 + p3 + p4),

〈T |φaψḃψċφd〉 = −Hεadεḃċ δ
3(p1 + p2 + p3 + p4),

〈T |ψȧψḃφcφd〉 = −1
2
Fεȧḃεcd δ

3(p1 + p2 + p3 + p4),

〈T |ψȧφbφcψḋ〉 = −Kεȧḋεbc δ
3(p1 + p2 + p3 + p4). (3.2)

At this stage there are 10 independent matrix elements A, . . . , L of the scattering amplitude.
We would now like to impose invariance under supersymmetry on the amplitude leading

to further constraints on the matrix elements. This is conveniently done by imposing
invariance conditions of the sort 〈T |Q11|φ1φ2φ2ψ2〉 = 0. From these we obtain altogether
32 constraints which are collected in the following 16 spinor-valued equations

0 = Av3 +Hu2 + Lu1, 0 = Bv3 + Cu4 +Hu2 − Lu1,

0 = Av4 +Gu2 +Ku1, 0 = Bv4 − Cu3 −Gu2 +Ku1,

0 = Av2 −Hu3 −Gu4, 0 = Bv2 − Fu1 −Hu3 +Gu4,

0 = Av1 − Lu3 −Ku4, 0 = Bv1 + Fu2 + Lu3 −Ku4,

0 = Du3 +Gv1 −Kv2, 0 = Eu3 − Fv4 −Gv1 −Kv2,

0 = Du4 −Hv1 + Lv2, 0 = Eu4 − Fu3 −Hv1 − Lv2,

0 = Du1 −Gv3 +Hv4, 0 = Eu1 − Cv2 +Gv3 +Hv4,

0 = Du2 +Kv3 − Lv4, 0 = Eu2 + Cv1 +Kv3 + Lv4. (3.3)

In order to extract the matrix elements A, . . . , L it is convenient to contract the equations
with spinors appearing in the equation using the antisymmetric tensor εαβ. To avoid clutter
we introduce an antisymmetric scalar product for spinors

〈u, v〉 = εαβuαvβ. (3.4)

In analogy to the scattering amplitudes in four-dimensional Yang-Mills theory using the
spinor-helicity formalism we shall call this product a twistor bracket. Moreover, we shall
use the short notation

〈kl〉 := 〈uk, ul〉, 〈k̄l〉 := 〈vk, ul〉, 〈k̄l̄〉 := 〈vk, vl〉. (3.5)
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Somewhat remarkably, all constraints can be solved simultaneously on the ten matrix
elements leaving just one overall factor T for the amplitude. The solution reads

A = T , D = −T 〈3̄4̄〉
〈12〉

, G = +T
〈4̄1〉
〈12〉

,

1
2

(A+B) = −T 〈3̄1〉〈24〉
〈12〉〈3̄4〉

,
1
2

(D + E) = +T
〈3̄1〉〈1̄3̄〉
〈12〉〈3̄4〉

, H = +T
〈3̄1〉
〈12〉

,

1
2

(A−B) = +T
〈14〉〈3̄2〉
〈12〉〈3̄4〉

,
1
2

(D − E) = −T 〈2̄3̄〉〈3̄2〉
〈12〉〈3̄4〉

, K = −T 〈4̄2〉
〈12〉

,

1
2
C = −T 〈3̄1〉〈3̄2〉

〈12〉〈3̄4〉
,

1
2
F = +T

〈3̄1〉〈1̄4〉
〈12〉〈3̄4〉

, L = −T 〈3̄2〉
〈12〉

. (3.6)

The overall factor T is at this point completely general and there are no additional restric-
tions on its form in our initial ansatz. We will see later that crossing symmetry does put
additional requirements however these are compatible with the definition in perturbative
field theory. Clearly there are many equivalent ways of writing the matrix elements which
also explains why many of the 32 constraints are degenerate. A useful set of identities for
the four scattering particles with p1 + p2 + p3 + p4 = 0 is given by

〈lm〉
〈kn〉

=
〈k̄l〉
〈m̄n〉

=
〈k̄n̄〉
〈l̄m̄〉

, 〈k̄k〉 = −2im, {k, l,m, n} = {1, 2, 3, 4}. (3.7)

Additionally there is a cyclic identity which holds for any four two-component spinors

0 = 〈a, b〉〈c, d〉+ 〈b, c〉〈a, d〉+ 〈c, a〉〈b, d〉. (3.8)

There are three simple relations among the matrix elements which can be checked using
the above identities

0 = AD +GL−HK,
0 = AD −BE + CF,

0 = (A−B)(D − E)− CF + 4GL. (3.9)

The remaining seven matrix elements are independent: they can be adjusted freely by
choosing one overall factor, one fermion phase for each leg (uk, vk 7→ e±iαkuk, vk) and the
two Mandelstam invariants s = (p1 +p2)2 and t = (p1 +p4)2. Note that by a Lorentz trans-
formation one can change only three of the fermion phases. Thus if one uses a particular
choice of spinor polarization as a function of momenta, e.g. (A.9), then only six elements
are independent.

3.2 Mixed scattering

Next we will consider scattering of mixed matter fields. Twisted hypermultiplets transform
under supersymmetry equivalently to untwisted multiplets, however with the statistics of
the on-shell particles flipped. To obtain the twisted scattering amplitudes we can thus
simply replace a (φa, ψȧ) by a (ψ̃a, φ̃ȧ) and insert the appropriate signs due to the change
of statistics.
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For correct overall statistics and parity of the internal symmetry, we can only twist
multiplets in pairs. First we twist particles 3 and 4 of the four-particle scattering ampli-
tude (3.2). A suitable ansatz for the mixed scattering amplitude is

〈T |φaφbψ̃cψ̃d〉 =
(

+
1
2

(A+B)εadεbc +
1
2

(A−B)εacεbd

)
δ3(p1 + p2 + p3 + p4),

〈T |ψȧψḃφ̃ċφ̃ḋ〉 =
(
− 1

2
(D + E)εȧḋεḃċ −

1
2

(D − E)εȧċεḃḋ

)
δ3(p1 + p2 + p3 + p4),

〈T |φaψḃψ̃cφ̃ḋ〉 = +Gεacεḃḋ δ
3(p1 + p2 + p3 + p4),

〈T |ψȧφbφ̃ċψ̃d〉 = −Lεȧċεbd δ3(p1 + p2 + p3 + p4),

〈T |φaφbφ̃ċφ̃ḋ〉 = +
1
2
Cεabεċḋ δ

3(p1 + p2 + p3 + p4),

〈T |φaψḃφ̃ċψ̃d〉 = −Hεadεḃċ δ
3(p1 + p2 + p3 + p4),

〈T |ψȧψḃψ̃cψ̃d〉 = −1
2
Fεȧḃεcd δ

3(p1 + p2 + p3 + p4),

〈T |ψȧφbψ̃cφ̃ḋ〉 = +Kεȧḋεbc δ
3(p1 + p2 + p3 + p4). (3.10)

The constraints due to supersymmetry turn out to be exactly the same as in (3.3): Due to
the change of statistics of particles 3 and 4, we have to flip the signs of all instances of u4, v4.
Furthermore, the signs of the matrix elements C,D,E,G,K in (3.10) have been flipped
with respect to those in (3.2). Altogether the sign flips cancel out and the solution (3.6)
applies to the mixed scattering matrix as well. Note that for the amplitudes A, . . . , L we
can use a different prefactor T which will be denoted by T123̃4̃. In general a particle index
k̃ will indicate a twisted hypermultiplet.

Finally, let us state the result for the scattering matrix of four twisted multiplets

〈T |ψ̃aψ̃bψ̃cψ̃d〉 =
(

+
1
2

(A+B)εadεbc +
1
2

(A−B)εacεbd

)
δ3(p1 + p2 + p3 + p4),

〈T |φ̃ȧφ̃ḃφ̃ċφ̃ḋ〉 =
(

+
1
2

(D + E)εȧḋεḃċ +
1
2

(D − E)εȧċεḃḋ

)
δ3(p1 + p2 + p3 + p4),

〈T |ψ̃aφ̃ḃψ̃cφ̃ḋ〉 = −Gεacεḃḋ δ
3(p1 + p2 + p3 + p4),

〈T |φ̃ȧψ̃bφ̃ċψ̃d〉 = −Lεȧċεbd δ3(p1 + p2 + p3 + p4),

〈T |ψ̃aψ̃bφ̃ċφ̃ḋ〉 = +
1
2
Cεabεċḋ δ

3(p1 + p2 + p3 + p4),

〈T |ψ̃aφ̃ḃφ̃ċψ̃d〉 = +Hεadεḃċ δ
3(p1 + p2 + p3 + p4),

〈T |φ̃ȧφ̃ḃψ̃cψ̃d〉 = +
1
2
Fεȧḃεcd δ

3(p1 + p2 + p3 + p4),

〈T |φ̃ȧψ̃bψ̃cφ̃ḋ〉 = +Kεȧḋεbc δ
3(p1 + p2 + p3 + p4). (3.11)

Here the signs of H,K,C, F have been flipped with respect to (3.2). Flipping as well the
signs of u2, v2, u4, v4 results in the same set of constraints (3.3) whose solution is given
by (3.6). The prefactor for this scattering process will be denoted by T1̃2̃3̃4̃.
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3.3 Scattering with N > 4 supersymmetry

Let us now consider the additional constraints that follow if we extend the supersymmetry
to N = 5. We have new invariance conditions of the type 〈T |Q̃α|φ1φ1φ2ψ̃2〉 which in
principle give sixteen constraints on the eight independent matrix structures

T1234, T123̃4̃, T12̃34̃, T12̃3̃4,

T1̃2̃34, T1̃23̃4, T1̃234̃, T1̃2̃3̃4̃. (3.12)

However most of the constraints are redundant and there are only six which are indepen-
dent. We choose these to be

+〈1̄2̄〉T12̃34̃ + 〈1̄3̄〉T123̃4̃ − 〈1̄4〉T1234 = 0,

−〈1̄2̄〉T1̃234̃ + 〈2̄3̄〉T123̃4̃ − 〈2̄4〉T1234 = 0,

+〈1̄2̄〉T12̃3̃4 − 〈1̄3〉T1234 − 〈1̄4̄〉T123̃4̃ = 0,

−〈1̄2〉T1̃2̃34 + 〈3̄2〉T12̃3̃4 + 〈4̄2〉T12̃34̃ = 0,

+〈2̄1〉T1̃2̃34 + 〈3̄1〉T1̃23̃4 + 〈4̄1〉T1̃234̃ = 0,

+〈12〉T1̃23̃4 − 〈13〉T1̃2̃34 + 〈4̄1〉T1̃2̃3̃4̃ = 0. (3.13)

We can thus express all scattering elements in terms of T1234 and T123̃4̃

T1̃2̃3̃4̃ = +2
〈11̄〉
〈1̄2̄〉

T123̃4̃ −
〈34〉
〈1̄2̄〉

T1234,

T1̃2̃34 = +
〈3̄4̄〉
〈1̄2̄〉

T123̃4̃,

T12̃34̃ = −〈1̄3̄〉
〈1̄2̄〉

T123̃4̃ +
〈1̄4〉
〈1̄2̄〉

T1234,

T12̃3̃4 = +
〈1̄4̄〉
〈1̄2̄〉

T123̃4̃ +
〈1̄3〉
〈1̄2̄〉

T1234,

T1̃23̃4 = −〈2̄4̄〉
〈1̄2̄〉

T123̃4̃ −
〈2̄3〉
〈1̄2̄〉

T1234,

T1̃234̃ = +
〈2̄3̄〉
〈1̄2̄〉

T123̃4̃ −
〈2̄4〉
〈1̄2̄〉

T1234. (3.14)

There are further, similar, relations if we consider the N = 6 algebra, however the
multiplet structure is slightly more complicated. In the case of N = 8 the algebra is
composed of two copies of psu(2|2) and the scattering matrix takes a simple tensor product
form. Let us consider in a little more detail the N = 8 case. There the fields have an
additional su(2) index â or ã (in Chern-Simons models these can originate from the defining
superalgebra as explained in section 2.1): φaâ, ψȧâ, ψ̃aã, φ̃ȧã. The N = 4 prefactors obtain
the corresponding indices, e.g.

〈T |φ1âφ1b̂φ2ĉφ2d̂〉 = T1234,âb̂ĉd̂ δ
3(p1 + p2 + p3 + p4). (3.15)

These are all related by the additional su(2)’s and so we can pick a single representative
TN=8 in each sector in terms of which we can express all other elements. Let us define it
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such that the respective su(2) indices take values 1, 2, 1, 2, for example

TN=8
1234 = T1234,1̂2̂1̂2̂, TN=8

123̃4̃
= T123̃4̃,1̂2̂1̃2̃. (3.16)

As before we consider the constraints following from invariance conditions such as

〈T |Q̃αẽf̂ |φ1âφ1b̂φ2ĉψ̃2d̃〉 = 0. (3.17)

and in addition to (3.14) we can find a relation between TN=8
123̃4̃

and TN=8
1234

TN=8
123̃4̃

=
〈1̄4〉
〈1̄3̄〉

TN=8
1234 . (3.18)

3.4 Crossing symmetry

First consider the exchange of particles 1 ↔ 2. In the scattering matrix (3.2), (3.6) it
corresponds to the following exchange of elements

A↔ +A, B ↔ −B, C ↔ −C, G↔ −K, H ↔ −L,
D ↔ −D, E ↔ +E, F ↔ +F, K ↔ −G, L↔ −H. (3.19)

It is straight-forward to verify that the whole scattering matrix is symmetric under the
interchange of particles if the prefactor obeys S2134 = S1234. Similarly, the exchange 3↔ 4
leads to the following map of matrix elements

A↔ +A, B ↔ −B, C ↔ +C, G↔ +H, H ↔ +G,

D ↔ −D, E ↔ +E, F ↔ −F, K ↔ +L, L↔ +K. (3.20)

Again this leaves the scattering matrix invariant provided that S1243 = S1234.
As a third type of crossing we consider the cyclic permutation 1 → 2 → 3 → 4 → 1.

It turns out to reshuffle the matrix elements in a more elaborate fashion

A2341 → −
1
2

(A1234 −B1234), B2341 → +
1
2

(3A1234 +B1234),

D2341 → +
1
2

(D1234 − E1234), E2341 → −
1
2

(3D1234 + E1234),

G2341 → +L1234, L2341 → −G1234,

C2341 → +2K1234, K2341 → +
1
2
F1234,

F2341 → −2H1234, H2341 → −
1
2
C1234. (3.21)

Cyclic crossing symmetry on all the matrix elements is achieved by demanding

1→ 2→ 3→ 4→ 1: T2341 = −T1234
〈23〉〈4̄1〉
〈12〉〈4̄3〉

. (3.22)

Finally, consider the twisted scattering amplitudes (3.10), (3.11). These have the same
crossing relations up to some signs due to statistics. A summary of the crossing relations
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is provided in the following table:

1↔ 2 3↔ 4 1→ 2→ 3→ 4→ 1

T2134 = +T1234 T1243 = +T1234 T2341 = −T1234
〈23〉〈4̄1〉
〈12〉〈4̄3〉

T213̃4̃ = +T123̃4̃ T124̃3̃ = −T123̃4̃ T23̃4̃1 = −T123̃4̃

〈23〉〈4̄1〉
〈12〉〈4̄3〉

T2̃1̃3̃4̃ = −T1̃2̃3̃4̃ T1̃2̃4̃3̃ = −T1̃2̃3̃4̃ T2̃3̃4̃1̃ = +T1̃2̃3̃4̃

〈23〉〈4̄1〉
〈12〉〈4̄3〉 (3.23)

Note that the cyclic crossing relation for the mixed hypermultiplets maps between scatter-
ing matrices with different hypermultiplet assignments.

3.5 Two-to-two particle scattering

The scattering amplitude 〈T1234| in (3.2) is written such that all four particles are on an
equal footing. For various purposes, however, it is convenient to write the scattering ampli-
tude as an operator T 43

12 acting on two-particle states and returning (a linear combination
of) two-particle states.

To convert between the two pictures, let us first introduce a two-particle state |1〉
which is invariant under the super-Poincaré algebra. In particular, its total momentum
must be zero, p2 = −p1. This implies the following relation for the polarization spinors

u2 = ie+iαv1, v2 = ie−iαu1, (3.24)

with some free parameter α representing the relative polarization between the spinors. It
is then straight-forward to confirm that the following composite state is annihilated by all
generators9

|1〉 =
∫
d3p 2πδ(p2 +m2)

(
εab|φaφb〉+ ieiαεȧḃ|ψȧψḃ〉

)
. (3.25)

This state is invariant under the full super-Poincaré algebra. Note that without the in-
tegration over the mass shell it would only be invariant under supercharges and internal
rotations which form an ideal of the algebra. The momenta p1,2 of the individual particles
break Lorentz invariance. We have inserted a normalization factor of 2π corresponding to
the imaginary part of a propagator 2 Im(p2 +m2 − iε)−1 = 2πδ(p2 +m2).

Now we can define the two-to-two scattering operator T 43
12 as

T 43
12|X1X2〉 =

1
2
〈T123̄4̄|X1X214̄413̄3〉, (3.26)

which is invariant by construction. The factor of 1/2 is a symmetry factor to account for
two identical outgoing particle multiplets; it is compensated by the phase space integrals

9This expression implies the use of polarization spinors u(p), v(p) with definite phase for a given mo-

mentum p, see the discussion in section 2.3. If we consider u1,2, v1,2 as the fundamental degrees of freedom,

we should choose the integral
R
d2u1 d

2v1 d
2u2 d

2v2 δ(〈v1, u1〉+ 2im) δ3(p1 + p2) . . . .
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in the S-matrix which count each state twice modulo permutation. More explicitly, using
the action (3.2), the operator takes the form

T |φaφb〉 = 2π2

∫
d3p δ(p2

3 +m2) δ(p2
4 +m2)

(
A|φ(aφb)〉+B|φ[aφb]〉+

1
2
Cεabε

ċḋ|ψċψḋ〉
)
,

T |ψȧψḃ〉 = 2π2

∫
d3p δ(p2

3 +m2) δ(p2
4 +m2)

(
D|ψ(ȧψḃ)〉+ E|ψ[ȧψḃ]〉+

1
2
Fεȧḃε

cd|φcφd〉
)
,

T |φaψḃ〉 = 2π2

∫
d3p δ(p2

3 +m2) δ(p2
4 +m2)

(
G|ψḃφa〉+H|φaψḃ〉

)
,

T |ψȧφb〉 = 2π2

∫
d3p δ(p2

3 +m2) δ(p2
4 +m2)

(
K|ψȧφb〉+ L|φbψȧ〉

)
. (3.27)

Here we have labeled the two outgoing particles as 4 and 3. We have also fixed the above
phase to α = 1

2π. In other words, the polarization spinors between particles 3, 4 and their
conjugates 3̄, 4̄ are related by

uk̄ = +vk, vk̄ = −uk (3.28)

and the matrix elements A, . . . , L equal those in (3.6) with indices A123̄4̄, . . . L123̄4̄.

3.6 Worldsheet scattering matrix for AdS/CFT and integrability

The extended psu(2|2) algebra plays an important role in the investigation of integrability
in the planar AdS/CFT correspondence between strings on AdS5 × S5 and N = 4 super
Yang-Mills theory [29, 30, 36]. It also appears analogously in the recently discussed duality
between strings on AdS4 × CP3 and N = 6 Chern-Simons theory [20, 21, 37, 38, 39]. The
algebra serves as the symmetry in a light cone gauge of string theory or equivalently in a
ferromagnetic excitation picture of gauge theory spin chains.

For the two body scattering of the N = 4 super Yang-Mills spin chain each of the
excitations can be one of 16 flavors and so the scattering is described by a 162 × 162

matrix. In [29] it was shown that the symmetries determine the matrix structure uniquely
and so it is determined up to an overall phase. The same result holds for the scattering of
worldsheet excitations on the string worldsheet [30, 31].

Hofman and Maldacena, [30] (see also [33]), pointed out that the constraints imposed
by the psu(2|2) algebra on the spin chain were exactly those that a four particle scattering
amplitude in 2 + 1-dimensions in a theory with the same super-algebra would have. They
further pointed out that the “dynamic” nature of the spin chain scattering, whereby the
length of the chain changes in certain scattering processes, is related to the non-Lorentz
invariance of the 2 + 1 scattering matrix. Under an overall rotation it picks up a phase due
to the fermions spin.

While the matrix structure of the scattering amplitude is identical between the spin
chain/worldsheet theory and the 2 + 1 Lorentz invariant theories the kinematics are quite
distinct which can be seen in the difference between the overall two- and three-dimensional
momentum delta functions. In two dimensions the scattering momenta can not change in
magnitude and at most can be exchanged between particles. In three dimensions the final
state phase space is larger and includes the relative angle between the two particles.
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The matrix elements A, . . . , L are related in terms of the spinors u, v from the super-
symmetry representation (2.9). In [29, 32] the supersymmetry representation is specified
in terms of the parameters a, b, c, d instead. We thus have to relate these sets of parameters
first: This is easily achieved by

u =
√

2im

(
+a
−c

)
, v =

√
2im

(
−b
+d

)
. (3.29)

The constraint 〈v, u〉 = −2im is equivalent to ad− bc = 1. This simple choice leads to the
following incoming momentum components10

p0 − p1 = −2ig mα(1− x+/x−),

p0 + p1 = −2ig mα−1(1− x−/x+),

p2 = −2g m(x+ − x−) + im. (3.30)

Note that the parameters a, b, c, d associated to the magnons depend on the ordering of
magnons, see [32] for details. The correct assignment is

u1 =
√

2igmγ1

(
1

−iα−1/x+
1

)
,

v1 =
√
−2igmγ−1

1 (x+
1 − x

−
1 )

(
iα/x−1

1

)
,

u2 =
√

2igmγ2ξ1

(
1

−iα−1x−1 /x
+
1 x

+
2

)
,

v2 =
√
−2igmγ−1

2 ξ−1
1 (x+

2 − x
−
2 )

(
iαx+

1 /x
−
1 x
−
2

1

)
,

u3 = −v3̄ =
√

2igmγ1ξ2

(
1

−iα−1x−2 /x
+
1 x

+
2

)
,

v3 = +u3̄ =
√
−2igmγ−1

1 ξ−1
2 (x+

1 − x
−
1 )

(
iαx+

2 /x
−
1 x
−
2

1

)
,

u4 = −v4̄ =
√

2igmγ2

(
1

−iα−1/x+
2

)
,

v4 = +u4̄ =
√
−2igmγ−1

2 (x+
2 − x

−
2 )

(
iα/x−2

1

)
. (3.31)

10Unfortunately, it turns out that p0 and p2 are purely imaginary for physical magnons of the worldsheet

theory. For magnons of the mirror worldsheet theory [40], however, all momentum components are real. In

fact one could choose for incoming particles u =
√
im(+a+ ic,−c− ia), v =

√
im(−b− id,+d+ ib) which

leads to exactly the same S-matrix elements. In that case p0 and p2 are interchanged and multiplied by

i thus making them real. For the alternative choice, the intermediate expressions are somewhat cluttered

and hence we shall stick to the above unphysical choice.
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Note that the energies are related as (E3, E4) = (E1, E2). Thus the prefactor T should
contain a factor of δ(E3 − E1). Let us thus compute the contribution from the delta
functions11

2π2

∫
d3p δ(p2

3 +m2)δ(p2
4 +m2)δ(E3 − E1) =

π2

2|p1xp2y − p1yp2x|
. (3.32)

We will thus need a compensating factor ∆12 for the prefactor

∆12 =
2
π2

(p1xp2y − p1yp2x) =
4ig2m2

π2

(
1− x+

1

x−1

)(
1− x+

2

x−2

)(
1− x−1 x

−
2

x+
1 x

+
2

)
. (3.33)

Substituting the representation spinors (3.31) into the matrix elements (3.6) one recovers
the S-matrix presented in [32] provided that the prefactors of the S-matrices are related as
follows

T123̄4̄ = δ(E1 − E3)∆12S
0
12

x+
2 − x

−
1

x−2 − x
+
1

. (3.34)

The matrix elements A, . . . , L have been normalized such that they can be compared di-
rectly to the results of [29, 32]. A priori the magnon S-matrix depends on nine parameters,
S0, x1, x2, g, α, γ1, γ2, ξ1, ξ2. As the matrix elements in (3.6) have only seven degrees of free-
dom, there must be two directions in the nine-dimensional parameter space along which
the S-matrix is invariant. From (3.31) one can easily infer that the parameters γ1, γ2, ξ1, ξ2

correspond to phases of the fermion spinors, see [30]. In the integrable system these pa-
rameters and the phase factor S0 are usually fixed leaving only three degrees of freedom
x1, x2, g. In that sense, the integrable S-matrix is merely a special case of the most general
spacetime S-matrix.

Let us now consider the crossing symmetry of the magnon S-matrix [41]. and com-
pare it to the crossing studied in section 3.4. Crossing of the magnon S-matrix corre-
sponds to interchanging particles 2 and 4. From iterating (3.23) we can derive the 2 ↔ 4
crossing relation

T1432 =
〈14〉
〈12〉

〈3̄2〉
〈3̄4〉

T1234 or T14̄3̄2 =
〈14̄〉
〈12〉

〈32〉
〈34̄〉

T123̄4̄. (3.35)

This combination of spinors takes the following form in x± notation

〈14̄〉
〈12〉

〈32〉
〈34̄〉

=
x−2 − x

−
1

x+
2 − x

−
1

1/x−2 − x
+
1

1/x+
2 − x

+
1

. (3.36)

We furthermore have to relate the crossed prefactor T14̄3̄2 to the crossed prefactor S0
12̄

and
also fix the parameters ξk 12

T14̄3̄2 = δ(E1 − E3)∆12

(
S0

12̄

1/x+
2 − x

−
1

1/x−2 − x
+
1

)−1

, ξ2
k =

x+
k

x−k
. (3.37)

11We will consistently drop the contribution from diagonal scattering where (p1, p2) = (p3, p4).
12We do not understand the appearance of the inverse in the formula, but it is necessary to make the

below crossing relation work.
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We then recover the crossing relation [41, 32]

1 =
S0

12S
0
12̄

ξ2
1

x+
2̄
− x−1

x−
2̄
− x−1

1/x+
2̄
− x+

1

1/x−
2̄
− x+

1

. (3.38)

Given this formal equivalence, it is natural to ask what role the known integrable
structures of the spin chain might play in the 2 + 1 dimensional supersymmetric Chern-
Simons theory. However due to the different kinematical structure (see also [30]), which is
imposed by the delta-function prefactor in the 1 + 1 dimensional model, the Chern-Simons
scattering matrix does not satisfy the Yang-Baxter equation.

3.7 Six-particle scattering

Let us briefly comment on scattering of more than four particles. In fact, scattering must
always involve an even number of external physical particles due to charge conservation:
All particles transform as a doublet of one of the two internal su(2) symmetries. In other
words they form a doublet of the diagonal su(2). A singlet of this su(2) can only be
composed from an even number of doublets.

The next non-trivial case is thus six external particles. Altogether there are 46 = 4096
components most of which are zero due to charge conservation. Taking into account the
su(2) × su(2) internal symmetry, there are 70 remaining invariant structures. Finally,
supersymmetry relates most of them and there are only two invariant structures leading
to two prefactors [32], see also [42]. These can, for instance, be obtained from the purely
bosonic and purely fermionic scattering processes

〈T |φ1φ1φ1φ2φ2φ2〉, 〈T |ψ1ψ1ψ1ψ2ψ2ψ2〉. (3.39)

In this work we will not need higher-particle scattering because it contributes to unitar-
ity relations starting from three loops. As there are no physical gluon states all scattering
amplitudes must involve an even number of external particles. For two-to-two scattering
this implies that in the unitarity relations we must have four internal, cut legs which implies
at least three loop momenta. Nevertheless, it would be interesting to see whether one can
set up recursion relations similar to those obtained for N = 4 SYM [9, 10] or find related
generating functions for amplitudes [43]. The form of the Chern-Simons matter scattering
amplitudes is actually quite similar to those of N = 4 SYM but again one must be careful
to take into account the significant differences due to the three-dimensional kinematics.

4 Color structures

Feynman diagrams in a gauge theory consist of two parts, spacetime functions and color
structures. Here we shall discuss the color structures relevant to four-point scattering in
N ≥ 4 Chern-Simons theories at tree level and at one loop. The scattering amplitudes
will then be written as linear combinations of these color structures multiplied by space-
time functions. In fact, it usually suffices to compute so-called color-ordered amplitudes.
However, because the gauge group decomposes into multiple factors potentially of different
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B C

DA

Figure 3. Sample Feynman graph and color structure.

A B Ã B̃ M N

Figure 4. Color lines: LAB , L̃ÃB̃ , KMN .

rank it is worth the effort of analyzing the structures in detail. It will turn out that the
numerical factors from the color structure crucially depend on the colors of the external
legs. In this section we will be quite general and the discussion, at least initially, is valid for
all the theories characterized by the various super-Lie algebras enumerated in section 2.1
including the exceptional superalgebras. Naturally when the discussion turns to the planar
limit we implicitly restrict ourselves to the theories with a large N limit.

4.1 Color graphs

We start by introducing a graphical notation which will be very useful to classify color
structures. Consider, for example, the scattering of two particles by exchange of a gluon,
cf. the Feynman graph in figure 3. The Feynman rules associate a color factor to each
vertex (e.g. TMAB) and to each line (e.g. KMN ). In gauge theories the color structure of
figure 3 is typically

TMABK
MNTNCD. (4.1)

We shall use the same graph figure 3 to denote this color structure. Nevertheless, the cor-
respondence between Feynman graphs and color structures is not one-to-one: There can
be vertices with a composite color structure, e.g. a single vertex can be of the form (4.1).
Therefore several Feynman diagrams will have one and the same color structure. Further-
more, different color structures are often related by some identities.

We now set up the specific rules for a generic N = 4 Chern-Simons model, cf. ap-
pendix B for a brief summary. There are three types of fields: untwisted matter, twisted
matter and gluons. We shall use solid, double and wiggly lines to distinguish between them,
see figure 4. The associated color factors are LAB, L̃ÃB̃ and KMN , respectively. There
are also three types of vertices: They connect a gluon to two untwisted fields, two twisted
fields or to two further gluons. The vertices are depicted in figure 5 and they correspond to
the structures MMAB = KMNM

N
AB, M̃MÃB̃ = KMNM̃

N
ÃB̃

and FMPQ = KMNF
N
PQ, respec-

tively. All the terms in the Lagrangian in appendix B.2 have a graphical representation
using the above lines and 3-vertices.
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M

A

B

M

Ã

B̃

M

P

Q

Figure 5. Color vertices: MMAB , M̃MÃB̃ , FMPQ.

+ + = 0

Figure 6. Jacobi identities for color structures.

1 2

34

1 2

34

1 2

34

Figure 7. Untwisted tree graphs: Υ (0)
12,34, Υ (0)

13,24, Υ (0)
14,23.

In a gauge theory the vertices are structure constants of the gauge group. They
therefore obey a host of identities, e.g. Jacobi identities. In our case there are five Jacobi
identities, see appendix B.1. They all have the same form and are summarized graphically
in figure 6. Note that the Jacobi identity only exists if all involved vertices exist: There
is no Jacobi identity for a gluon line joining a twisted with an untwisted vertex! Here our
main interest is the enumeration of distinct structures and not their precise prefactors. For
instance, we shall not always pay close attention to signs.

4.2 Tree level

Let us first consider a scattering process of four untwisted matter fields. At tree level we
need two 3-vertices to connect the four external lines. There are three ways in which this
can be done, see figure 7. We shall denote the structures by

Υ
(0)
AB,CD = MMABK

MNMNCD. (4.2)

They have the obvious eight-fold symmetries Υ (0)
AB,CD = Υ

(0)
BA,CD = Υ

(0)
CD,AB. Furthermore,

the Jacobi identity in figure 6 relates these three structures

Υ
(0)
AB,CD + Υ

(0)
AC,DB + Υ

(0)
AD,BC = 0. (4.3)

Now any scattering amplitude at tree level can be written as

T = TsΥ
(0)
12,34 + TtΥ

(0)
14,23 + TuΥ

(0)
13,24. (4.4)
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Figure 8. Mixed tree graphs: Υ (0)

12,3̃4̃
, Υ (0)

12,3̃4̃
, Υ (0)

13,2̃4̃
, Υ (0)

1̃2̃,34
, Υ (0)

1̃2̃,34
, Υ (0)

1̃3̃,24
.

The Jacobi identity (4.3), however, states that the basis Υ
(0)
12,34, Υ

(0)
13,24, Υ

(0)
14,23 is over-

complete. Thus for any δ the amplitude is equivalent to

T = (Ts + δ)Υ (0)
12,34 + (Tt + δ)Υ (0)

14,23 + (Tu + δ)Υ (0)
13,24. (4.5)

We can use this freedom to remove one of the coefficients, for example δ = −Ts simplifies
the amplitude to

T = T ′tΥ
(0)
14,23 + T ′uΥ

(0)
13,24. (4.6)

Next we consider scattering amplitudes between two untwisted and two twisted fields.
They can be written using the symbol

Υ
(0)

AB,C̃D̃
= MMABK

MNM̃NC̃D̃. (4.7)

There are six permutations for the function: Υ (0)

12,3̃4̃
, Υ (0)

13,2̃4̃
, Υ (0)

14,2̃3̃
, Υ (0)

23,1̃4̃
, Υ (0)

24,1̃3̃
, Υ (0)

34,1̃2̃
, see

figure 8. In this case there are no Jacobi identities because there is no vertex to connect
untwisted and twisted fields directly.

Finally, the amplitudes for four twisted fields are analogous to the untwisted fields
discussed above. Altogether there are 2 + 6 + 2 color structures for four-particle scattering
at tree level.

4.3 One loop

For four particle scattering at the one-loop level there must be four 3-vertices which can be
connected in various ways. It is obvious that the graph has one internal loop which permits
a rough classification: The loop can have two sides (bubble), three sides (triangle) or four
sides (box). A bubble can be understood to dress a line while a triangle dresses a vertex.
Bubbles and vertices are in fact closely related, see figure 9 Consider a bubble connected
to a vertex by a line. Applying the Jacobi identity (figure 6) to the connecting line will
move the loop onto the vertex. Consider instead a triangle with two sides of equal kind (in
our model triangles always have this property). Applying the Jacobi identity (figure 6) to
the third side will move the loop onto the line at the opposite side. We can thus convert
freely between bubbles and triangles. The only exception where this is not possible is for
configurations of mixed particles which lack a Jacobi identity.

A similar relation holds between triangles and boxes. Consider two adjacent vertices,
one of them being dressed by a loop, see figure 10. Then apply the Jacobi identity (fig-
ure 6) to the connecting line. This yields two boxes. The boxes are distinct and thus
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Figure 9. Bubble-triangle relations.

= +

Figure 10. Triangle-box relation.

this conversion is a one-way procedure: Triangles can be converted to boxes (unless they
contain mixed particles), but not vice versa.

Our strategy for enumerating independent one-loop structures for four-particle scatter-
ing is clear. We should convert bubbles to triangles and triangles to boxes as far as possible.

We start with only untwisted particles. Clearly the color structures can be converted
to boxes by the above procedure. A box has the underlying structure

Υ
(1) �
AB,CD = MMAEMNCFK

MNKPQLEGLFHMPGBMQHD. (4.8)

It has a fourfold symmetry Υ
(1) �
AB,CD = Υ

(1) �
BA,DC = Υ

(1) �
CD,AB. In total there are six boxes,

all of the same structure, but with a permutation of the external legs, see figure 11. The
Jacobi identity relates all six of these, but only at the expense of triangles which have been
eliminated earlier. It turns out that the basis of six boxes is minimal.

For four external untwisted fields there is also the option to have twisted particles run
in the internal loop. In this case the loop must be a bubble dressing the central gluon line.
Jacobi identities are ineffective here and thus there are three structures denoted by Υ (1) ◦̃

12,34,

Υ
(1) ◦̃
14,23, Υ (1) ◦̃

13,24 (see figure 12). Bubble graphs are defined by

Υ
(1) ◦
AB,CD = MMABK

MPMPEFL
EGLFHMQGHK

QNMNCD,

Υ
(1) ◦̃
AB,CD = MMABK

MP M̃PẼF̃ L̃
ẼG̃L̃F̃ H̃M̃QG̃H̃K

QNMNCD, (4.9)

they have the same eightfold symmetry as tree graphs Υ (0)
AB,CD, but they do not obey an

identity like (4.3). Note that the untwisted bubble can be expanded to a sum of boxes

Υ
(1) ◦
AB,CD = 2Υ (1) �

AD,BC + 2Υ (1) �
AC,BD. (4.10)
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Figure 11. Purely untwisted scattering at one loop. Clockwise from top left: Υ (1) �
14,23 , Υ (1) �

13,24 , Υ (1) �
13,42 ,

Υ
(1) �
12,43 , Υ (1) �

12,34 , Υ (1) �
14,32 . The horizontal and vertical dotted lines indicate possible unitarity cuts in

the s- and t-channels, respectively, to be discussed in section 6.4. Note that gluon lines cannot be
cut in Chern-Simons theories.

Figure 12. Untwisted scattering with internal twisted loop: Υ (1) ◦̃
12,34, Υ (1) ◦̃

14,23, Υ (1) ◦̃
13,24. The horizontal

and vertical dotted lines indicate possible unitarity cuts in the s- and t-channels, respectively, to
be discussed in section 6.5.

Finally, we must enumerate the structures for mixed four-particle scattering at one
loop. It turns out that some graphs can be promoted to a box while others cannot.
The latter ones can however be brought to the form of a bubble dressing the central
gluon line. There are four diagrams Υ (1) �

14,2̃3̃
, Υ (1) �

14,3̃2̃
, Υ (1) ◦

14,2̃3̃
, Υ (1) ◦̃

14,2̃3̃
for each assignment of the

untwisted and twisted particles to the external legs, see figure 13, giving a total of 24. The
structures are analogous to those in (4.8), (4.9) but with some structure constants replaced
by twisted ones.

Before we close this part, it is useful to mention that the one-loop structures can
be understood as squares of tree structures. For example the box can be written as an
iterated tree

Υ
(1) �
AB,CD = Υ

(0)
AE,CFL

EGLFHΥ
(0)
GB,HD, (4.11)

or Υ (0)
16,25Υ

(0)
64,53 = Υ

(1) �
14,23 for short. For the three basic tree color structures Υ (0)

12,34, Υ (0)
14,23 and
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Figure 13. Mixed scattering at one loop with untwisted particles 1, 4 and twisted particles 2, 3:
Υ

(1) �
14,2̃3̃

, Υ (1) �
14,3̃2̃

, Υ (1) ◦
14,2̃3̃

, Υ (1) ◦̃
14,2̃3̃

.

1

2

1

2

1 2

34

1

2

1

0

1 2

3̃4̃

1

2

3

2

1 2̃

3̃4

Figure 14. Three color ordering structures Tr(1̄2)(2̄1)(1̄2)(2̄1) for 1234, Tr(1̄2)(2̄1)(1̄0)(0̄1) for
123̃4̃, Tr(1̄2)(2̄3)(3̄2)(2̄1) for 12̃3̃4

Υ
(0)
13,24 we can set up a convenient multiplication table:

· Υ
(0)
56,34 Υ

(0)
53,64 Υ

(0)
63,54

Υ
(0)
12,56 Υ

(1) ◦
12,34 −1

2
Υ

(1) ◦
12,34 −

1
2
Υ

(1) ◦
12,34

Υ
(0)
16,25 −

1
2
Υ

(1) ◦
12,34 Υ

(1) �
14,23 Υ

(1) �
13,24

Υ
(0)
15,26 −

1
2
Υ

(1) ◦
12,34 Υ

(1) �
13,24 Υ

(1) �
14,23 (4.12)

4.4 Planar limit and color ordering

It is often convenient to consider gauge groups with a very large rank where the class of
planar Feynman diagrams contributes dominantly. At the one-loop level it is in fact often
sufficient to just compute the planar Feynman diagrams and all the non-planar corrections
follow by completion of the color structures. Color ordering for scattering amplitudes is
also based intrinsically on the availability of many colors. Here we discuss the large-N
behavior of the color structures discussed above.

A prototypical N = 4 supersymmetric Chern-Simons model with mixed hypermulti-
plets is a quiver theory with U(Nk) gauge groups, see figure 1 on page 6. The gauge fields
belong to the adjoint of the U(Nk) while the matter fields are bi-fundamentals connecting
two adjacent gauge group factors. Let us for definiteness assume that untwisted matter
connects U(N2k−1) to U(N2k) and twisted matter connects U(N2k) to U(N2k+1), cf. figure 1.
In the planar limit all the Nk are taken to be proportional to some large number N .
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1

2
2

1

. . .

0

1
2

3

. . .

1

1 −
2

2 +
3

3 −

. . .

Figure 15. Double line notation for untwisted, twisted and gluon color lines, cf. figure 4. Gluon
lines have associated sign factors.

. . . . . .

+

−

. . .

Figure 16. Double line notation for vertices, cf. figure 5. Pure gluon vertices have associated sign
factors.

N1

N2

N1

N2

N2
+

+

1 2

34

N1

N2

N1

N2

N1− −

1 2

34

Figure 17. Two box graphs Υ (1) �
14,23 and Υ

(1) �
12,43 with different assignment of internal gluons con-

tracted with the color structure Tr(1̄2)(2̄1)(1̄2)(2̄1) in the planar limit.

Now we shall consider color ordering of the legs in a scattering graph: Each leg is
assigned a pair of fundamental color indices (k̄, k ± 1). Two adjacent legs have a common
but mutually conjugate color index . . . , k)(k̄, . . .. A sample color ordering structure for
four untwisted fields is thus Tr(1̄2)(2̄1)(1̄2)(2̄1). A similar color ordering structure for two
untwisted and two twisted fields would be Tr(1̄2)(2̄1)(1̄0)(0̄1), see figure 14.

A color ordering structure can be applied to a color graph in order to yield a polynomial
in the ranks Nk. It is straight-forward to evaluate the polynomial when the graph is
represented in a double line notation: The lines of a color structure (see figure 4) are
thickened to a ribbon and the two sides of the ribbon are attributed a certain color Nk, see
figure 15. The color indices must be adjacent for matter lines and equal for gauge lines as
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N1

N2

N1

N2

N2
+

+

N1

N2

N2

−

+

N1

N2

N2

+

−

N1

N2

N1
−

−

Figure 18. Full evaluation of the box graph Υ
(1) �
14,23 contracted with the color structure

N−2
1 N−2

2 Tr(1̄2)(2̄1)(1̄2)(2̄1): N2 −N−1
1 −N−1

1 +N−1
2 .

explained above. A vertex connects sides of equal color in two possible ways, see figure 16.
Each closed loop of color k then contributes one power of Nk to the monomial associated
to the ribbon graph. A (possibly incomplete) set of rules to determine the sign of a ribbon
graph is as follows: Signs originate from gluon lines with odd color (figure 15) as well as
from one out of two pure gluon vertices (figure 16). Note that we will not be careful about
some overall signs of color graphs when they are not related in some way. Sample ribbon
graphs are provided in figure 17. It is obvious that the large-N asymptotics follows from
the planar structure of the graph. However, the precise distribution of the Nk ∼ N factors
is not as easily recognized. In the example in figure 17 the two different orientations of
the box lead to two different leading-N contributions, N2

1N
3
2 vs. N3

1N
2
2 . Let us therefore

evaluate the color structures discussed above which appear in the field theory calculation
at one loop.

Pure scattering. For scattering of four untwisted particles we shall always take the
standard color ordering of N−2

1 N−2
2 Tr(1̄2)(2̄1)(1̄2)(2̄1), cf. figure 14, to evaluate color

structures. The prefactor cancels the color factors which originate from the color ordering
structure itself and they make the large-N expansion more transparent. For the tree graphs
in figure 7 we obtain the following exact results

Υ
(0)
12,34 → −1 +

1
N3N4

, Υ
(0)
14,23 → +1− 1

N3N4
, Υ

(0)
13,24 → 0. (4.13)

The large-N asymptotics agrees with the planar structure of the underlying graphs, the first
two are planar while the third one is non-planar. Also the Jacobi identity (4.3) is fulfilled.

Next we evaluate the box graphs in figure 11, see figure 18 for an explicit example,

Υ
(1) �
14,23 → N2 −

2
N1

+
1
N2

, Υ
(1) �
14,32 → −

2
N1

+
2
N2

, Υ
(1) �
13,24 → 0 ,

Υ
(1) �
12,43 → N1 −

2
N2

+
1
N1

, Υ
(1) �
12,34 → +

2
N1
− 2
N2

, Υ
(1) �
13,42 → 0 . (4.14)

The bubble graphs in figure 12 yield similar expressions

Υ
(1) ◦
12,34 → 2N2 −

4
N1

+
2
N2

, Υ
(1) ◦
14,23 → 2N1 −

4
N2

+
2
N1

, Υ
(1) ◦
13,24 → 0 .

Υ
(1) ◦̃
12,34 → 2N0 +

2N3

N1N2
, Υ

(1) ◦̃
14,23 → 2N3 +

2N0

N1N2
, Υ

(1) ◦̃
13,24 → 0 . (4.15)
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The untwisted bubbles are related to the boxes via (4.10) and the above expressions obey
the rule. Note that we have evaluated the twisted bubbles under the assumption of many
gauge group factors in theN = 4 quiver diagram (figure 1). ForN = 5, 6, 8 supersymmetric
models twisted and untwisted representations are the same and thus the bubbles in (4.15)
must be the same as well

Υ (1) ◦ = Υ (1) ◦̃. (4.16)

The expressions (4.15) for N3 → N1 and N0 → N2 do not reflect the equality because the
above assumptions for evaluating the twisted bubble Υ (1) ◦̃ do not apply in a closed quiver
of length two (see figure 1 on page 6). Instead we must set Υ (1) ◦̃ → Υ (1) ◦ for N = 5, 6, 8.

Mixed scattering. Our standard color ordering for mixed scattering of the type 123̃4̃
will be N−1

0 N−2
1 N−1

2 Tr(1̄2)(2̄1)(1̄2)(2̄1), cf. figure 14. The single tree diagram for this
assignment of twisted legs evaluates to

Υ
(0)

12,3̃4̃
→ −1. (4.17)

The one-loop graphs can be found in figure 13, they yield

Υ
(1) �
12,3̃4̃

→ N1, Υ
(1) �
12,4̃3̃

→ 1
N1

, Υ
(1) ◦
12,3̃4̃

→ 2N2 −
2
N1

, Υ
(1) ◦̃
12,3̃4̃

→ 2N0 −
2
N1

. (4.18)

Finally let us consider another assignment of twisted legs 123̃4̃ which will become useful
later. The standard color ordering will be N−1

1 N−2
2 N−1

3 Tr(1̄2)(2̄3)(3̄2)(2̄1), cf. figure 14.
The color ordered tree graph reads

Υ
(0)

14,2̃3̃
→ +1. (4.19)

while the color ordered loop amplitudes in figure 13 yield

Υ
(1) �
14,2̃3̃

→ N2, Υ
(1) �
14,3̃2̃

→ 1
N2

, Υ
(1) ◦
14,2̃3̃

→ 2N1 −
2
N2

, Υ
(1) ◦̃
14,2̃3̃

→ 2N3 −
2
N2

. (4.20)

For purely twisted scattering we use the ordering N−2
2 N−2

3 Tr(3̄2)(2̄3)(3̄2)(2̄3), but the
results will be analogous to those of purely untwisted scattering discussed above.

5 Four-particle scattering in field theory

In this section we compare the results for the four particle scattering matrix, obtained
in section 3 using the supersymmetry algebra, with the predictions of perturbative field
theory computations at the tree and one-loop level.

In what is to follow, we shall start with the N = 4 theory without twisted hyper-
multiplets, we shall then build on that by including twisted hypermultiplets but without
imposing any particular conditions on the representations under which the two matter
multiplets transform. Thus the solutions we obtain will hold for theories with N = 4, 5, 6
and 8 supersymmetries. We will relegate some of the details regarding the field theory
conventions to the appendices where one can find, for example, the explicit expression for
the action (B.5) and the oscillator expansion of the fields (B.15).
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D,p4 C,p3

B,p2A,p1

AT = + +

Figure 19. Diagrams for the A element at tree level.

We can define, as is usual, two particle in and out states for the scalars and fermions
in terms of their free oscillator expressions:

|B, p2;A, p1〉in =
√

2E1

√
2E2C

†
B(p2)C†A(p1)|0, t = −∞〉 (5.1)

where A,B denote, here collectively, all the particle labels and C†A,B are the corresponding
positive energy creation operators. One can then define the S-matrix elements between in
and out states as usual which in turn, in the notation of (section 3.5), defines the operator
T 43

12 via the usual relation S = 1 + iT . Thus,

out〈p4, p3|p2, p1〉in = δ1(3δ4)2 + iδ (p1 + p2 − p3 − p4) T123̄4̄ . (5.2)

However to connect with the four-particle scattering matrix used in (3.2), where all the
momenta are on an equal footing and we have negative energy particles, we must rather
consider four point correlation functions. As is standard, we identify the one-particle
irreducible four point functions with all momenta incoming, Γ (p1, p2, p3, p4) with −i T1234.

In doing this we must be slightly careful regarding the definition of our asymptotic
states. At tree-level we will simply include an addition factor

√
4π/k per external field but

at higher loops we must include the non-trivial field renormalization that occurs.

5.1 Pure amplitudes at tree level

Let us initially consider the element of T given by

A = i
〈
φA1 (p1)φB1 (p2)φC2 (p3)φD2 (p4)

〉
(5.3)

where A denotes the total contribution for untwisted scalar to scalar scattering, transform-
ing in the symmetric representation of su(2) and without any implicit requirements of color
ordering on the indices A,B,C,D.

Explicit evaluation of the complete, non-color ordered matrix element A follows from
the Feynman diagrams (figure 19) and, in terms of a simplified coupling

g =
4π
k
, (5.4)

gives the expression

A = g KMN

(
MM
ADM

N
BCAt +MM

ACM
N
BDAu

)
, (5.5)
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with the color stripped amplitudes At, Au

At = 2i
(
im− εµνρp

µ
1p

ν
3p
ρ
4

(p1 + p4)2

)
, Au = 2i

(
im− εµνρp

µ
1p

ν
4p
ρ
3

(p1 + p3)2

)
. (5.6)

There are equivalent expressions for At expressed in terms of the three dimensional Lorentz
invariants s, t, u or the spinors, which themselves are related by,

s = (p1 + p2)2 = −〈12̄〉〈1̄2〉 = 〈11̄〉2 − 〈12〉〈1̄2̄〉,
t = (p1 + p4)2 = −〈14̄〉〈1̄4〉 = 〈11̄〉2 − 〈14〉〈1̄4̄〉,
u = (p1 + p3)2 = −〈13̄〉〈1̄3〉 = 〈11̄〉2 − 〈13〉〈1̄3̄〉,

√
−stu = ±〈12̄〉〈23̄〉〈31̄〉. (5.7)

In terms of these variables we can write 13

At = i
〈12〉〈2̄4̄〉
〈4̄1〉

= i

(
2im−

√
−stu
t

)
, (5.8)

The At term in the above expression captures the contribution from one ordering of the
contact term indices and the t-channel gluon exchange, while the second term Au is the
remaining part of the contact term and the u-channel gluon exchange. Due to the choice
of su(2) indices there is no s-channel gluon exchange diagram. In obtaining this answer we
have used the fact that the Chern-Simons propagator is given by〈

AµM (p)AνN (q)
〉

= g KMN
εµνρpρ

2p2
δ3(p+ q). (5.9)

As discussed in section 4.2 the symmetries of KMN and MM
AB in conjunction with the

fundamental identity imply that it is possible to write any tree level amplitude involving
only untwisted hypermultiplets as

A(0) = AtΥ
(0)
14,23 +AuΥ

(0)
13,24. (5.10)

Note that (5.5) is already of this form. For amplitudes where this is not automatically the
case, we can eliminate the s-channel color structure using the fundamental identity

KMN

(
MM
ACM

N
BD +MM

CBM
N
AD +MM

BAM
N
CD

)
= 0. (5.11)

The color ordered contribution to the amplitude is taken to be simply the first (t-channel)
term of the above expression, after we strip away the color factor: At. The second (u-
channel) term is related to the first term by crossing.

The undetermined prefactor T appearing in the matrix elements (3.6) simply equals
the A element. Thus the color ordered normalization factor Tt is nothing but the t-channel
amplitude for scalars transforming in the symmetric representation of su(2)

Tt = At = i
〈12〉〈2̄4̄〉
〈4̄1〉

. (5.12)

13In the left-most expression there is a sign ambiguity due to the square root. In checking such properties

as crossing it is therefore always preferable to use the spinor formulation.
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Once this factor has been set, as above, we can check the other matrix elements all of which
will have the same prefactor:

g KMNM
M
ADM

N
BC = g Υ

(0)
14,23 (5.13)

and for which the tree level perturbative computations yield:

A = +i
〈12〉〈2̄4̄〉
〈4̄1〉

, D = −i〈2̄4̄〉〈3̄4̄〉
〈4̄1〉

, G = +i〈2̄4̄〉 ,

1
2

(A+B) = −i〈3̄1〉〈24〉〈2̄4̄〉
〈4̄1〉〈3̄4〉

,
1
2

(D + E) = −i〈3̄1〉〈1̄3̄〉〈2̄4̄〉
〈4̄1〉〈3̄4〉

, H = +i
〈3̄1〉〈2̄4̄〉
〈4̄1〉

,

1
2

(A−B) = −i〈14〉〈1̄3̄〉
〈3̄4〉

,
1
2

(D − E) = +i
〈1̄3̄〉〈2̄3̄〉
〈3̄4〉

, K = −i〈4̄2〉〈2̄4̄〉
〈4̄1〉

,

1
2
C = −i〈3̄1〉〈1̄3̄〉

〈3̄4〉
,

1
2
F = +i

〈2̄4〉〈1̄3̄〉
〈3̄4〉

, L = +i〈1̄3̄〉 . (5.14)

These results are in manifest agreement with the predictions from the supersymmetry
algebra in (3.6). We can now write the complete tree-level untwisted-untwisted scatter-
ing prefactor

T
(0)
1234 = Υ

(0)
14,23

(
ig
〈12〉〈2̄4̄〉
〈4̄1〉

)
+ Υ

(0)
13,24

(
ig
〈12〉〈2̄3̄〉
〈3̄1〉

)
. (5.15)

Since the twistor brackets satisfy a host of non-linear identities such as (3.7), (3.8) there
is no canonical way of representing the results of the perturbative computations however
the above seems to be particularly simple. We note the following identities have been used
to compute the scattering amplitudes involving four fermions i.e. the matrix elements D
and E:

(u4̄γµv1) (u3̄γνv2)
εµνρ(p1 + p4)ρ

t
= 2
〈2̄4̄〉〈3̄4̄〉
〈14̄〉

,

(u3̄γµu4̄) (v1γνv2)
εµνρ(p1 + p2)ρ

s
= 2

(
〈12〉〈2̄4̄〉
〈14̄〉

)(
〈3̄2〉〈2̄3̄〉
〈12〉〈3̄4〉

)
. (5.16)

On the l.h.s., we have the contributions of gluon exchanges between two fermions as they
would usually appear in a (tree level) perturbative computation. The r.h.s. are the relevant
twistorial expressions.

Given the explicit expressions for the matrix elements it is straightforward to check
that they satisfy the crossing relations described in section 3.4. For example the invariance
under exchange 3↔ 4 is immediate from (5.15) and using the identities (3.7) one can see
that it is invariant under exchange of 1↔ 2. To further see that the prefactor transforms as

T
(0)
2341 = −〈23〉〈4̄1〉

〈12〉〈4̄3〉
T

(0)
1234 (5.17)

under 1→ 2→ 3→ 4→ 1 we need to use (3.8) and the Jacobi identities relating the tree
level color structures.
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5.2 Mixed amplitudes at tree level

The ‘twisted-untwisted’ multiplet scattering is much the same and the overall prefactor T ,
corresponding to the A element, is

A = T = 〈T |φ(aφb)ψ̃(cψ̃d)〉. (5.18)

In this case is the color ordered amplitude is defined to be the coefficient of the single
mixed color structure at tree level

g KMNM
M
BAM̃

N
DC = g Υ

(0)

12,3̃4̃
. (5.19)

We have the following perturbative tree-level results:

A = −i〈34〉 , D = +i〈1̄2̄〉 , G = −i〈32̄〉 ,

1
2

(A+B) = +i
〈2̄4〉〈24〉
〈3̄4〉

,
1
2

(D + E) = −i〈2̄4〉〈1̄3̄〉
〈3̄4〉

, H = −i〈2̄4〉 ,

1
2

(A−B) = +i
〈1̄4〉〈14〉
〈3̄4〉

,
1
2

(D − E) = −i〈2̄3̄〉〈1̄4〉
〈3̄4〉

, K = −i〈31̄〉 ,

1
2
C = +i

〈2̄4〉〈3̄2〉
〈3̄4〉

,
1
2
F = −i〈2̄4〉〈1̄4〉

〈3̄4〉
, L = −i〈1̄4〉 . (5.20)

Once again, we note that the perturbative tree level results completely agree with the
computations based on the supersymmetry algebra (3.6). In this case the complete result
for tree level untwisted-twisted scattering is given by

T
(0)

123̃4̃
= −ig〈34〉 Υ (0)

12,3̃4̃
. (5.21)

For the sake of completeness, we list some of the key identities that are useful for converting
the results obtained from standard perturbation theory to the twistorial expressions used
in the expression for the scattering matrix

(v3̄εv4̄)
[
〈3̄1〉〈24〉
〈12〉〈3̄4〉

+
〈14〉〈3̄2〉
〈12〉〈3̄4〉

]
= −2εµνσ(v4̄σµv3̄)

(p1)ν(p2)σ
s

,

(v3̄εv4̄)
[
〈3̄2〉〈2̄3̄〉
〈12〉〈3̄4〉

− 〈3̄1〉〈1̄3̄〉
〈12〉〈3̄4〉

]
= +2εµνσ (v1σµv2)

(p3)ν(p4)σ
s

,

2 (v3̄εv4̄)
[
〈3̄1〉〈1̄4〉
〈12〉〈3̄4〉

]
= −ε

µνσ

s
(p1 + p2)σ (v4̄σµv3̄) (v1σνv2) ,

(v3̄εv4̄)
[
〈3̄1〉〈3̄2〉
〈12〉〈3̄4〉

]
= −ε

µνσ(p3 − p4)µ(p1)ν(p2)σ
s

. (5.22)

As it is also useful for later considerations we record the field theory result for scattering
when particles 2 and 3 are twisted. In this case the overall prefactor, corresponding to the
A element, is

A = T = 〈T |φ(aψ̃b)ψ̃(cφd)〉 = i
〈1̄2〉〈12〉
〈3̄2〉

= −i 〈4̄3〉〈43〉
〈2̄3〉

. (5.23)
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Thus we have

T
(0)

12̃3̃4
= −ig 〈1̄2〉〈12〉

〈23̄〉
Υ

(0)

14,2̃3̃
. (5.24)

In the case of scattering between the twisted matter content of the theory, we have
to consider the fact that the quartic bosonic vertex as well as the fermion mass terms
come with opposite signs as compared to the untwisted sector. The explicit formulae for
the scattering of the untwisted multiplet can be readily adapted to the case at hand. The
matrix elements for any four untwisted fields can be taken over to their twisted counterparts
by changing the sign of the mass and replacing u(p) by v(p) and vice versa. Thus the matrix
element D is given by

D = i
〈1̄2̄〉〈24〉
〈41̄〉

= i

(
−2im−

√
−stu
t

)
, (5.25)

where the relevant color prefactor is gΥ (0)

1̃4̃,2̃3̃
. It is a straightforward exercise to see that (3.6)

continues to describe the four particle scattering matrix relevant to the twisted sector of
the theory. In particular the overall prefactor, T = A, for this sector is given by

T = A = −i〈24〉〈34〉
〈41̄〉

(5.26)

and so

T
(0)

1̃2̃3̃4̃
= Υ

(0)

1̃4̃,2̃3̃

(
−ig 〈24〉〈34〉

〈41̄〉

)
+ Υ

(0)

1̃3̃,2̃4̃

(
−ig 〈23〉〈43〉

〈31̄〉

)
. (5.27)

Finally one can check that the untwisted-twisted and twisted-twisted scattering matrix
elements satisfy the crossing relations in section 3.4.

If one chooses the matter to be in representations such that there is extended N =
5 supersymmetry there are additional relations between the pure twisted-twisted, pure
untwisted-untwisted and the mixed untwisted-twisted scattering as described in section 3.3.
It is straightforward to check that the perturbative calculations are consistent with those
additional relations. In particular, if the untwisted and twisted multiplets transform in the
same gauge representation, supersymmetry implies that

T123̃4̃ =
〈3̄1〉〈2̄1̄〉T1̃2̃3̃4̃ + 〈12〉〈2̄4〉T1234

〈12〉〈2̄3̄〉+ 〈14〉〈4̄3̄〉
(5.28)

which is indeed satisfied by the tree-level expressions above.
To check the N = 8 relations one must make use of the simplifications in the color

structure that occur for the gauge group SO(4)

Υ
(0)
12,34 = MM

ABKMNM
N
CD ∝ εABCDεâb̂εĉd̂

Υ
(0)
13,24 = MM

ACKMNM
N
CD ∝ −εABCDεâĉεb̂d̂

Υ
(0)
14,23 = MM

ACKMNM
N
CD ∝ εABCDεâd̂εb̂ĉ . (5.29)

Using these relations one can check that the constraints (3.18) are satisfied.

– 36 –



J
H
E
P
0
6
(
2
0
0
9
)
0
4
5

5.3 One-loop amplitudes in pure N = 4 SCS

In this section we shall calculate the one-loop correction to the scattering matrix using
standard off-shell methods. As is well known, it is possible using unitarity relations, to
reconstruct the imaginary part of the one-loop amplitudes from the phase space integral
over products of tree-level amplitudes (which can of course be extended to higher orders).
This provides a very efficient method for calculating scattering amplitudes and the results
that follow from unitarity for the theories at hand, elaborated upon in detail in the next
section, are in perfect agreement with the predictions following from the supersymmetry
algebra. However the drawback of these methods is the so called “polynomial ambiguity”
whereby the cut construction can miss contributions which are rational functions of the
kinematic invariants lacking a cut. In four dimensional super Yang-Mills all one-loop mass-
less amplitudes are cut constructible (for discussion see e.g. [44]) as all rational terms are
related to terms with cuts at O(ε0) (where ε is the dimensional regularisation parameter).
This is true for the maximally supersymmetric N = 4 case but also for N = 1 theories.
However it is certainly not true in general and non-supersymmetric Yang-Mills theories
are not one-loop cut constructable. Thus while it is reasonable to expect the one-loop
amplitudes in the supersymmetric Chern-Simons matter theories to be cut-constructible it
is by no means guaranteed. The off-shell methods provide a check that the cuts are indeed
capturing all the amplitude and that there is no rational piece unrelated to a logarithm.
In principle one could also fix any rational function by working to sufficiently high order
in ε however this can be involved and the direct calculation is quite feasible for the two to
two scattering.

We will consider the matrix element G in (3.2)

G δ3(p1 + p2 + p3 + p4) = −〈T |φ1ψ1̇ψ2̇φ2〉 (5.30)

as it involves the fewest number of Feynman diagrams at the one-loop level. We initially
consider the contribution with only gluons or untwisted matter running in loops and then
separately add the contribution from twisted matter. Let us now make a few remarks
about the color structure; following an examination of interactions following from the
action (B.5) we can use the Jacobi identities on the vertices to see that, in the notation
of section 4.3, only box-like structures occur. The color structures that appear in the
s-channel diagrams are:

Υ
(1) �
14,23 and Υ

(1) �
13,24 , (5.31)

in the t- and u-channels we have, respectively,

Υ
(1) �
13,42 , Υ

(1) �
12,43 and Υ

(1) �
12,34 , Υ

(1) �
14,32 . (5.32)

Thus we see that all box-like color structures enumerated in section 4.3 can appear. How-
ever the coefficients of the different structures are all related by crossing and so we need
only calculate a single coefficient. We will thus focus on the s-channel contribution to the
color-ordered amplitude which occurs with the prefactor Υ (1) �

14,23 .
The one-loop correction to G involves four Feynman diagrams (figure 20). Two of

these diagrams correspond to ‘bubbles’ with a scalar and a fermionic propagator forming
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D,p4 C,p3

A,p1 B,p2

T1 T2B2

p6 p5

B1

G1−loop

Figure 20. Diagrams for the G element at one-loop.

a closed loop and two are ‘triangles’, where a gluon exchange between the intermediate
scalar and fermion fields completes the loop. The complete answer is given by

G(1) = i Υ
(1) �
14,23

∫
d3` (B1 +B2 + T1 + T2) (5.33)

The integrands for the bubble diagrams with all momenta incoming are:

B1 = −i v2ε(ip6 +mε)εv4

2(p2
6 +m2)(p2

5 +m2)
,

B2 = −i v2ε(ip5 +mε)εv4

2(p2
6 +m2)(p2

5 +m2)
. (5.34)

The integrands for the triangles are:

T1 =
i

D
(v2ε(ip6 +mε)σ̄ρv4 ερνµ(p6 + p4)ν(p5 − p3)µ) ,

T2 =
i

D′
(v2σ̄

ρ(ip5 +mε)εv4 ερνµ(p2 − p5)ν(p1 + p6)µ) . (5.35)

It is to be understood that all the spinors and σ matrices carry lower indices and we use
the shorthand notation where (pi)αβ = (pi)µ(σµ)αβ. We denote σ matrices with raised
indices as σ̄ i.e. (σ̄µ)αβ = εαγεβδ(σµ)γδ. We also have introduced

D = 2(p2
6 +m2)(p2

5 +m2)(p6 + p4)2 and

D′ = 2(p2
6 +m2)(p2

5 +m2)(p5 − p2)2 (5.36)

to denote the triangle denominators. There is of course only one independent loop momen-
tum as p5 and p6 are related by the kinematical constraints p6 +p5 = p1 +p2 = −(p3 +p4).
We now note the following identities:

v2ε(ip6 +mε)σ̄ρv4 = −iv2(εηρκ + σ̄χε
χκρ)v4 (p6 + p2)κ,

v2σ̄
ρ(ip5 +mε)εv4 = −iv2(ηρκε+ ερκχσ̄χ)v4 (p5 − p4)κ. (5.37)
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The use of these identities in T1 and T2 respectively, generates four terms for each of the
triangle diagrams. Using p̄ij = pi − pj and pij = pi + pj for brevity, we have

T1a = − 2
D

(v2εv4) ε(p5, p3, p4 − p2),

T1b = +
1
D

(v2σ̄
ρηρλv4) p2

64p̄
λ
53,

T1c = +
1
D

(v2σ̄
ρηρλv4) (p2

5 +m2)pλ64,

T1d = +
1
D

(v2σ̄
ρηρλv4) (p̄42 · p̄53p

λ
64 − p̄42 · p64p̄

λ
53). (5.38)

Similarly, we obtain

T2a = − 2
D′

(v2εv4) ε(p4 − p2, p6, p1),

T2b = +
1
D′

(v2σ̄
ρηρλv4) p̄2

52p
λ
16,

T2c = +
1
D′

(v2σ̄
ρηρλv4) (p2

6 +m2)p̄λ52,

T2d = +
1
D′

(v2σ̄
ρηρλv4) (p̄42.p̄25p

λ
16 − p̄42.p16p̄

λ
25). (5.39)

After introducing Feynman parameters to simplify the denominators, shifting the loop
momenta and dropping terms linear in the loop momenta it can be straightforwardly seen
that the terms T1a,2a and T1d,2d cancel using the relation

(v2εv4) ε(p4, p3, p2) = −v2σ̄
λv4

[
p2 · p̄24 (p1)λ − p1 · p̄24 (p2)λ

]
. (5.40)

Further, the terms T1b, T2b, B1 and B2 combine to give

T1b + T2b +B1 +B2 = +i
v2ε(ip1 −mε)εv4

(p2
6 +m2)(p2

5 +m2)
(5.41)

which corresponds to an s-channel massive scalar bubble integral, Im(s), with a coefficient
proportional to 〈2̄1̄〉〈14̄〉. The massive bubble integral can be evaluated

Im(s) =
∫
d3`

1
(`2 +m2) ((`− p12)2 +m2)

=
iπ2

√
−s

ln
(

2m+
√
−s

2m−
√
−s

)
. (5.42)

Finally there is the contribution from the terms T1c and T2c which can be written as

T1c + T2c =
−im (v2εv4)

(˜̀2 +∆)2
(x− 1), (5.43)

where we have introduced the Feynman parameter x and ∆ = (1 − x)2m2. In fact the
integral over the loop momenta and Feynman parameter can be trivially done and the
result is ∫

dx

∫
d`3

1
(˜̀2 +∆)2

(x− 1) =
π2

m
. (5.44)
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Figure 21. Diagrams for fermionic propagator at one-loop.

This thus contributes to the amplitude a term proportional to the tree level contribution

π2〈2̄4̄〉Υ (1) �
14,23 , (5.45)

however it is cancelled by identical factors coming from the renormalization of the fermionic
fields and which contribute to the S-matrix via the LSZ reduction formula.

We first consider the diagrams contributing to the fermionic self-energy (figure 21):
a tadpole with scalars in the loop and a gluon correction. There is also in principle a
contribution from the twisted fields, if they are present, however their contribution vanishes
due to color index contractions. The tadpole diagram gives an integrand

T (p) = −iKMNM
M
AÂ
MN
B̂B
LB̂Âεȧḃ

ε

`2 +m2
(5.46)

and the gluon correction is

I(p) = −KMNM
M
AÂ
MN
B̂B
LB̂Âεȧḃ

σ̄µ (i(`− p) + εm) σ̄νεµρν`ρ

2 [(`− p)2 +m2] `2
. (5.47)

For simplicity we strip off the color and flavor indices, then using the relations

σλσ̄ν = −ηλν + σκεε
κλν ,

σ̄λσν = −ηλν + σ̄κεε
κλν (5.48)

we can simplify the gluon contribution

I(p) = −−i` · (`− p) ε−m `

[(`− p)2 +m2] `2

= − −iε
(`− p)2 −m2

+
` · p ε−m `

[(`− p)2 +m2] `2
(5.49)

where the first term can be seen to cancel against the tadpole diagram. We can simplify
the remaining term by introducing Feynman parameter x and shifting the loop-momenta.
Thus, with ∆ = x(1− x)p2 + xm2, we have

M2(p) = im

∫
dx

∫
d3` x

ε(ip+ p2/m ε)ε
[`2 +∆(p)]2

. (5.50)

Iterating these 1PI diagrams we find the correction to the propagator

(ip+mε)
p2 +m2 +M2(p)

= Zf(p)
ip+ εm

p2 +m2
+ terms regular as p0 → E(p) (5.51)
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Figure 22. Diagrams for bosonic propagator at one-loop.

where we see that the mass remains unchanged (the pole is not shifted as the correction is
proportional to the inverse propagator) and that the one-loop shift in the field renormal-
ization is δZf(p) = ig2π2. The one-loop correction to the bosonic propagator can be easily
seen to be zero. The relevant diagrams are given in (figure 22).

In this case the boson and fermion contributions exactly cancel and the gluon contri-
bution is zero due to the ε tensor in the propagator, thus Zb(p) = 1. There are almost
identical contributions to the matter in the twisted hypermultiplets.

There is also a non-vanishing one-loop correction to the gluon propagator which is a
known effect in supersymmetric Chern-Simons theories (see e.g. [45]) and indeed in this
case we find the same result. The gluon self-interaction cancels against the ghost loop while
the fermion and bosonic contributions add to give a correction that is similar to the four-
dimensional YM propagator. However we should point out that as there are no physical
gluon states, there is no point in interpreting this correction as a field renormalization
entering into the scattering matrix.

It is worth here pausing to make a comment regarding the color structures that can
arise from the corrections to the S-matrix due to the field renormalizations. These have the
structure of bubbles on fermionic legs, labelled respectively (B, p2) and (D, p4), attached
to tree-level diagrams Υ (0)

14,23 and Υ
(0)
13,24, for example[

KMNM
M
DEM

NEF
][
KPQM

P
AFM

Q
BC

]
. (5.52)

However making use of the identities described in section 4.3 and in particular figure 9 we
can express these in the basis of one-loop box diagrams to find the relevant term i.e. the
coefficient of the structure Υ (1) �

14,23 .
The one-loop contribution to the G element from the field renormalization is

∆G(1) =
(√

Zb(p1)Zf(p2)Zb(p3)Zf(p4)− 1
)
G(0) = −π2〈2̄4̄〉 (5.53)

which can be seen to cancel the contribution (5.45).
Thus we find that

G(1) = i 〈2̄1̄〉〈14̄〉 Im(s). (5.54)

This is the complete s-channel contribution at one-loop, whose overall factor is Υ (1) �
14,23 , for

an N = 4 theory without twisted hypermultiplets. There of course remain the other color
ordering and the t-channel and u-channel diagrams; the t-channel diagrams are identical to
those above after exchanging the external momenta while the u-channel contributions are
slightly more complicated. However, as stated above they are all related to the calculated
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Figure 23. Twisted contribution to the G element at one-loop.

piece, once one accounts for the appropriate color factors. Using this element we can
determine the one-loop piece of the overall factor undetermined by the symmetries

T (1) =
G(1)

G(0)
T (0) = i〈1̄2̄〉〈12〉Im(s) (5.55)

and thus

T
(1)
1234 =

(
Υ

(1) �
14,23 + Υ

(1) �
13,24

)
[i〈1̄2̄〉〈12〉Im(s)]

+
(
Υ

(1) �
13,43 + Υ

(1) �
12,43

)[
i
〈2̄3̄〉〈1̄2〉〈34〉
〈1̄4〉

Im(t)
]

+
(
Υ

(1) �
12,34 + Υ

(1) �
14,32

)[
i
〈2̄4̄〉〈12〉〈3̄4〉
〈3̄1〉

Im(u)
]
. (5.56)

5.4 Mixed amplitudes at one loop

We now include the contributions from the twisted hypermultiplets which give rise to two
massive bubble diagrams (figure 23). The color structure arises in the s-channel from
diagrams with twisted fields in the loop is Υ (1) ◦̃

12,34. The contribution to the matrix element
from these diagrams is thus

G(1) = iΥ
(1) ◦̃
12,34

∫
d3`
(
B̃1 + B̃2

)
(5.57)

where the integrands for these twisted bubble diagrams are:

B̃1 = −i v2ε(ip6 −mε)εv4

2(p2
6 +m2)(p2

5 +m2)
,

B̃2 = −i v2ε(ip5 −mε)εv4

2(p2
6 +m2)(p2

5 +m2)
. (5.58)

Combining these we find the same result as in (5.41) but with the opposite sign,

B̃1 + B̃2 = −i v2ε(ip1 −mε)εv4

2(p2
6 +m2)(p2

5 +m2)
. (5.59)

Including the t- and u-channel contributions the one-loop contribution to the untwisted-
untwisted scattering matrix is

∆T
(1)
1234 = Υ

(1) ◦̃
12,34

[
− i

2
〈1̄2̄〉〈12〉Im(s)

]
+ Υ

(1) ◦̃
12,43

[
− i

2
〈2̄3̄〉〈1̄2〉〈34〉
〈1̄4〉

Im(t)
]

+ Υ
(1) ◦̃
13,24

[
− i

2
〈2̄4̄〉〈12〉〈3̄4〉
〈3̄1〉

Im(u)
]
. (5.60)
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We recall the contribution from the untwisted fields (5.56) and note that we can rewrite the
the combination of untwisted color boxes as untwisted bubbles so that the total answer is

T
(1)
1234 =

(
Υ

(1) ◦
12,34 − Υ

(1) ◦̃
12,34

)[ i
2
〈1̄2̄〉〈12〉Im(s)

]
+
(
Υ

(1) ◦
12,43 − Υ

(1) ◦̃
12,43

)[ i
2
〈2̄3̄〉〈1̄2〉〈34〉
〈1̄4〉

Im(t)
]

+
(
Υ

(1) ◦
13,24 − Υ

(1) ◦̃
13,24

)[ i
2
〈2̄4̄〉〈12〉〈3̄4〉
〈3̄1〉

Im(u)
]
. (5.61)

In the special case, of N > 4 supersymmetry where both the twisted and untwisted
multiplets are in the same representation of the gauge group, the color structures will be
equal and so lead to a cancellation. In this case we simply find that

T
(1)
1234 = 0. (5.62)

For the other sectors there are almost identical diagrams between untwisted-twisted hy-
permultiplets, namely for the element H123̃4̃, which implies

T
(1)

123̃4̃
= 0 (5.63)

and for twisted-twisted scattering, L1̃2̃3̃4̃, which implies

T
(1)

1̃2̃3̃4̃
= 0. (5.64)

However we will leave the more complete treatment to the substantially more efficient
unitarity methods of the next section. Note that a vanishing one-loop contribution is
obviously in agreement with the N > 4 constraints on scattering amplitudes discussed in
section 3.3.

6 Scattering unitarity

The scattering matrix S = 1 + iT in a reasonable quantum field theory is expected to be
unitary, S†S = 1. For the scattering amplitudes T it implies the unitarity condition

− i(T − T †) = T †T . (6.1)

In this section we would like to compare the one-loop field theory results of the previous
section with scattering unitarity. In particular, we want to see whether the field theory
results stand a chance of being cut constructible.

6.1 Adjoint and multiplication

In order to confirm unitarity for the amplitudes derived above, we should first understand
how to take the adjoint and how to multiply two-to-two scattering amplitudes T [T ], where
T is the overall factor as defined in (3.6).
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The adjoint scattering amplitude has the same structure as the original amplitude but
with different matrix elements

A†
123̄4̄

= (A432̄1̄)∗, D†
123̄4̄

= (D432̄1̄)∗,

B†
123̄4̄

= (B432̄1̄)∗, E†
123̄4̄

= (E432̄1̄)∗,

C†
123̄4̄

= (F432̄1̄)∗, F †
123̄4̄

= (C432̄1̄)∗,

G†
123̄4̄

= (L432̄1̄)∗, L†
123̄4̄

= (G432̄1̄)∗,

H†
123̄4̄

= (H432̄1̄)∗, K†
123̄4̄

= (K432̄1̄)∗. (6.2)

Here the spinors 1̄, 2̄, 3̄, 4̄ are conjugate to 1, 2, 3, 4, respectively, according to (3.28)

uk̄ = +vk, vk̄ = −uk. (6.3)

For unitary representations (2.13), or more generally by replacing u∗α → vα, v∗α → uα, the
adjoint matrix elements take the same form as the original matrix elements (3.6). We can
thus write the adjoint scattering amplitude as a regular scattering amplitude

T [T ]† = T [T †], (6.4)

but instead of T with the prefactor T † defined by

T †
123̄4̄

= (T432̄1̄)∗. (6.5)

This is because for unitary representations the adjoint scattering matrix obeys the same
symmetries as the original one.

Iterative two-to-two particle scattering also satisfies the transformation laws of overall
two-to-two scattering, hence

T [T ′] T [T ′′] = T [T ]. (6.6)

The following relations between the matrix elements ensure that the product takes the
expected form

T ′′
125̄6̄

T ′
653̄4̄

T123̄4̄

=
A′′

125̄6̄
A′

653̄4̄

A123̄4̄

=
D′′

125̄6̄
D′

653̄4̄

D123̄4̄

=
B′′

125̄6̄
B′

653̄4̄
+ C ′′

125̄6̄
F ′

653̄4̄

B123̄4̄

=
E′′

125̄6̄
E′

653̄4̄
+ F ′′

125̄6̄
C ′

653̄4̄

E123̄4̄

=
B′′

125̄6̄
C ′

653̄4̄
+ C ′′

125̄6̄
E′

653̄4̄

C123̄4̄

=
E′′

125̄6̄
F ′

653̄4̄
+ F ′′

125̄6̄
B′

653̄4̄

F123̄4̄

=
G′′

125̄6̄
K ′

653̄4̄
+H ′′

125̄6̄
G′

653̄4̄

G123̄4̄

=
K ′′

125̄6̄
K ′

653̄4̄
+H ′′

125̄6̄
G′

653̄4̄

K123̄4̄

=
G′′

125̄6̄
L′

653̄4̄
+H ′′

125̄6̄
H ′

653̄4̄

H123̄4̄

=
K ′′

125̄6̄
L′

653̄4̄
+ L′′

125̄6̄
H ′

653̄4̄

L123̄4̄

. (6.7)

The prefactor of the product is thus simply given by

T123̄4̄ = 2π2

∫
d3p δ(p2

5 +m2) δ(p2
6 +m2)T ′′125̄6̄ T

′
653̄4̄. (6.8)

Similar relations hold for scattering matrices involving twisted hypermultiplets intro-
duced in section 3.2. We will not present these in detail here, but merely apply them
where needed.

– 44 –



J
H
E
P
0
6
(
2
0
0
9
)
0
4
5

1 2

34

56

T

T †

Figure 24. Particle setup for the unitarity relations.

6.2 Unitarity relations

Now we are in a position to consider unitarity for two-to-two scattering amplitudes from
field theory. We neglect intermediate states with more than two particles. This approx-
imation is exact at the two-loop level because physical particles can only be created or
annihilated in pairs. According to the above considerations, unitarity leads to the follow-
ing relation for the prefactor, see also figure 24,

− iT123̄4̄ + i(T432̄1̄)∗ = 2π2

∫
d3p δ(p2

5 +m2) δ(p2
6 +m2)T125̄6̄ (T435̄6̄)∗ +O(g4). (6.9)

It is convenient to go to the center of mass frame and thus make a choice for the momenta
of the particles

p1 = (E,+p, 0), p2 = (E,−p, 0),

p3 = (E,−p cosα,−p sinα), p4 = (E,+p cosα,+p sinα),

p5 = (E,−p cosβ,−p sinβ), p6 = (E,+p cosβ,+p sinβ). (6.10)

In this frame the integral over the delta functions can be evaluated

2π2

∫
d3p δ(p2

5 +m2) δ(p2
6 +m2)F123456 =

∫
π2dβ

4E
F123456. (6.11)

Substituting the loop expansion of the prefactor

T = gT (0) + g2T (1) + g3T (2) + . . . , g =
4π
k
, (6.12)

we obtain the unitarity relations up to two loops

− iT (0)

123̄4̄
+ i
(
T

(0)

432̄1̄

)∗ = 0,

−iT (1)

123̄4̄
+ i
(
T

(1)

432̄1̄

)∗ =
∫
π2dβ

4E
T

(0)

125̄6̄

(
T

(0)

435̄6̄

)∗ =
∫
π2dβ

4E
T

(0)

125̄6̄
T

(0)

6̄5̄34
,

−iT (2)

123̄4̄
+ i
(
T

(2)

432̄1̄

)∗ =
∫
π2dβ

4E

(
T

(0)

125̄6̄

(
T

(1)

435̄6̄

)∗ + T
(1)

125̄6̄

(
T

(0)

435̄6̄

)∗)
. (6.13)

The above relations hold for a N = 4 supersymmetric model with only one type of
hypermultiplet. If there are both types of hypermultiplets present, the relation (6.9) has
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to be extended and supplemented by

− iT123̄4̄ + i
(
T432̄1̄

)∗ =
∫
π2dβ

4E

(
T125̄6̄

(
T435̄6̄

)∗ + T
12˜̄5˜̄6

(
T

43˜̄5˜̄6

)∗)+O(g4),

−iT
12˜̄3˜̄4

+ i
(
T4̃3̃2̄1̄

)∗ =
∫
π2dβ

4E

(
T125̄6̄

(
T4̃3̃5̄6̄

)∗ + T
12˜̄5˜̄6

(
T

4̃3̃˜̄5˜̄6

)∗)+O(g4),

−iT
12̃˜̄34̄

+ i
(
T

43̃˜̄21̄

)∗ =
∫
π2dβ

4E

(
T

12̃˜̄56̄

(
T

43̃˜̄56̄

)∗ + T
12̃5̄˜̄6

(
T

43̃5̄˜̄6

)∗)+O(g4). (6.14)

Relations among the other prefactors can be obtained by applying discrete symmetries.
The loop expansion for all of these is analogous to (6.13). As discussed in section 3.3 there
are further constraints for amplitudes in models with N > 4 supersymmetry. The above
relations obey these constraints.

6.3 Tree level

One can assign untwisted and twisted hypermultiplets to the legs of two-to-two scattering
amplitudes in 8 different ways. As discussed in section 3.2 they all have an equivalent
matrix structure, but the prefactors are different in general.

The tree-level prefactors with alike hypermultiplets in the in/out channels have the
following color structures, cf. section 4.2,

T
(0)

123̄4̄
= Υ

(0)
14,23t

(0)

123̄4̄
+ Υ

(0)
13,24t

(0)

124̄3̄
, T

(0)

12˜̄3˜̄4
= Υ

(0)

12,3̃4̃
t
(0)

12˜̄3˜̄4
,

T
(0)

1̃2̃3̄4̄
= Υ

(0)

1̃2̃,34
t
(0)

1̃2̃3̄4̄
, T

(0)

1̃2̃˜̄3˜̄4
= Υ

(0)

1̃4̃,2̃3̃
t
(0)

1̃2̃˜̄3˜̄4
+ Υ

(0)

1̃3̃,2̃4̃
t
(0)

1̃2̃˜̄4˜̄3
. (6.15)

The coefficient functions t have been evaluated in field theory in sections 5.1 and 5.2

t
(0)

123̄4̄
= −i〈12〉〈2̄4〉

〈14〉
, t

(0)

12˜̄3˜̄4
= −i〈3̄4̄〉,

t
(0)

1̃2̃3̄4̄
= −i〈12〉, t

(0)

1̃2̃˜̄3˜̄4
= −i〈24̄〉〈3̄4̄〉

〈4̄1̄〉
. (6.16)

For mixed hypermultiplets in the in/out channels the color structure of the prefac-
tor reads

T
(0)

12̃˜̄34̄
= Υ

(0)

14,2̃3̃
t
(0)

12̃˜̄34̄
, T

(0)

12̃3̄˜̄4
= Υ

(0)

13,2̃4̃
t
(0)

12̃˜̄43̄
,

T
(0)

1̃2˜̄34̄
= Υ

(0)

24,1̃3̃
t
(0)

21̃˜̄34̄
, T

(0)

1̃23̄˜̄4
= Υ

(0)

24,1̃3̃
t
(0)

21̃˜̄43̄
, (6.17)

with the single coefficient function

t
(0)

12̃˜̄34̄
= i
〈3̄4̄〉〈3̄4〉
〈2̄3̄〉

. (6.18)

Using the spinor identities (3.7), it is straightforward to confirm the tree-level unitarity
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conditions (
t
(0)

432̄1̄

)∗ = i
〈4̄3̄〉〈31̄〉
〈4̄1̄〉

= t
(0)

123̄4̄
,(

t
(0)

43˜̄2˜̄1

)∗ = i〈21〉 = t
(0)

1̃2̃3̄4̄
,(

t
(0)

4̃3̃˜̄2˜̄1

)∗ = i
〈3̄1〉〈21〉
〈14〉

= t
(0)

1̃2̃˜̄3˜̄4
,

(
t
(0)

43̃˜̄21̄

)∗ = −i〈21〉〈21̄〉
〈32〉

= t
(0)

12̃˜̄34̄
. (6.19)

6.4 Pure matter at one loop

Next we consider one-loop unitarity for a model with only one type of hypermultiplet. First
the color structure of the integrand in (6.13) is investigated

T
(0)

125̄6̄
T

(0)

653̄4̄
= 2Υ (1) �

14,23 t
(0)

125̄6̄
t
(0)

653̄4̄
+ 2Υ (1) �

13,24 t
(0)

125̄6̄
t
(0)

654̄3̄
(6.20)

We have used the crossing property t
(0)

123̄4̄
= t

(0)

214̄3̄
and identified the color structure as a

box Υ
(0)
16,25Υ

(0)
64,53 = Υ

(1) �
14,23 , cf. (4.12). For convenience we have indicated the unitarity cuts

in figure 11 on page 27. We evaluate and simplify the product of coefficient functions

π2

4E
t
(0)

125̄6̄
t
(0)

653̄4̄
= −iπ2

(
ieiβ

eiβ − 1
− ieiβ

eiβ − eiα

)
t
(0)

123̄4̄
− π2p2

E
. (6.21)

Note that the integrand has single poles at the angles β = 0 and β = α. At these points
the momenta of the intermediate particles 6, 5 agree precisely with the ones of the ingoing
particles 1, 2 (β = 0) or outgoing particles 4, 3 (β = α). They originate from a gluon
exchange with zero momentum. Fortunately the poles have exactly opposite residues and
thus we can ignore their contribution altogether. The unitarity condition leads to an
imaginary part which is independent of the overall scattering angle α

− iT (1)

123̄4̄
+ i
(
T

(1)

432̄1̄

)∗ =
∫
π2dβ

4E
T

(0)

125̄6̄
T

(0)

653̄4̄
= −4π3p2

E

(
Υ

(1) �
14,23 + Υ

(1) �
13,24

)
= −2π3p2

E
Υ

(1) ◦
12,34 = −π

3〈12〉〈1̄2̄〉√
〈12̄〉〈1̄2〉

Υ
(1) ◦
12,34. (6.22)

The conversion between different color structures is due to the identity (4.10) and the final
transformation

√
〈12̄〉〈1̄2〉 = 2E and 〈12〉〈1̄2̄〉 = 4p2 makes the result independent of a

specific frame. This expression is in agreement with the field theory calculation (5.56) in
section 5.3: The expression (5.56) obeys T (1)

123̄4̄
=
(
T

(1)

432̄1̄

)∗ except for branch cut discontinu-
ities in the loop integrals. The integral Im(s) in (5.42) has a branch cut with discontinuity
(
√
−s = 2E)

Im(s− iε)− Im(s+ iε) = − 2π3

√
−s

θ(
√
−s− 2m) = −π

3

E
θ(E −m). (6.23)

The bubble integrals Im(t), Im(u) in the t- and u-channels clearly have no cuts in the
physical region. For the one-loop expression (5.56)

T
(1)

123̄4̄
=
i

2
〈12〉〈1̄2̄〉 Im(s− iε)Υ (1) ◦

12,34 + . . . = 2ip2 Im(s− iε)Υ (1) ◦
12,34 + . . . (6.24)
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we thus get full agreement with unitarity (6.22). We can in fact do even better and compare
the results before integrating over the loop momenta phase space. Taking the integrand of
the Feynman diagram calculation (section 5.3) and putting all momenta on-shell, one finds
agreement with (6.21). It can be seen that the pole terms indeed come from the ‘triangle’
diagrams which involve gluon exchange whereas the finite piece gets contributions from
both the ‘triangle’ and ‘bubble’ diagrams.

It is a curious fact that the full one-loop amplitude T (1)

123̄4̄
from field theory is a linear

combination of massive scalar bubbles Im without further rational parts. The coefficients of
the bubbles can be reconstructed from unitarity in all channels. Expanding cuts using the
inverse of (6.23), i.e. the minimal replacement, therefore yields the full one-loop amplitude
from unitarity. It gives a hint that amplitudes in N = 4 Chern-Simons theories may be
cut constructible.

Finally we would like to consider the total cross section of the scattering process of
two hypermultiplets. For that purpose we shall set α = 0 so that the in and out states are
the same. The cross section is proportional to

2 ImT
(1)

122̄1̄
=
∫
π2dβ

4E

∣∣T (0)

125̄6̄

∣∣2 = −2π3p2

E
Υ

(1) ◦
12,34. (6.25)

Curiously it appears that it is negative although the integrand itself is manifestly positive.
Let us thus have a closer look at the integrand

π2

4E

∣∣t(0)

125̄6̄

∣∣2 =
π2

4E
t
(0)

125̄6̄
t
(0)

653̄4̄
=

π2E

sin2(1
2β)
− π2p2

E
= π2E cot2

(
1
2
β

)
+
π2m2

E
. (6.26)

In the last form it is manifestly positive. Due to a double pole the integral is infinite
and needs to be regularized. A principal value prescription (or any other contour in the
complex plane) will show that the 1/ sin2 term does not contribute. The finite remainder
is however negative.

Essentially we have dropped a contribution from forward scattering where a gluon with
zero momentum and zero energy is exchanged. Thus the peculiarity can be associated to
an infra-red divergence. It is in fact very similar to the collinear divergences encountered
in Yang-Mills theories, but it is milder: It can only appear for gluons with zero momentum
whereas for Yang-Mills it appears for all light-like gluons. The effects are nevertheless
similar. The reason why the IR singularity cannot directly be seen in the result is related
to the fact that in odd spacetime dimensions there are no divergences at one loop.

6.5 Mixed matter at one loop

We now consider one-loop scattering unitarity in a theory with both types of hypermulti-
plets using the relations (6.14).

The integrands of the first integral in (6.14) have the color structures

T
(0)

125̄6̄
T

(0)

653̄4̄
= 2Υ (1) �

14,23 t
(0)

125̄6̄
t
(0)

653̄4̄
+ 2Υ (1) �

13,24 t
(0)

125̄6̄
t
(0)

654̄3̄
, T

(0)

12˜̄5˜̄6
T

(0)

6̃5̃3̄4̄
= Υ

(1) ◦̃
12,34t

(0)

12˜̄5˜̄6
t
(0)

6̃5̃3̄4̄
, (6.27)
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where we have used the composition of trees to loop in (4.12), see also figure 11 and 12.
The remaining coefficients evaluate to

π2

4E
t
(0)

125̄6̄
t
(0)

653̄4̄
= −iπ2

(
ieiβ

eiβ − 1
− ieiβ

eiβ − eiα

)
t
(0)

123̄4̄
− π2p2

E
,

π2

4E
t
(0)

12˜̄5˜̄6
t
(0)

6̃5̃3̄4̄
=
π2p2

E
.

(6.28)
In the integral over β the residues cancel and only the constant pieces remain

− iT (1)

123̄4̄
+ i
(
T

(1)

432̄1̄

)∗ = −2π3p2

E

(
Υ

(1) ◦
12,34 − Υ

(1) ◦̃
12,34

)
. (6.29)

Again this result agrees with the field theory computation (5.61). Furthermore the
field theory result is again a linear combination of massive scalar bubbles Im hinting at
cut constructibility.

The two integrands of the second integral in (6.14) have the following color structures,
cf. figure 13

T
(0)

125̄6̄
T

(0)

65˜̄3˜̄4
= −Υ (1) ◦

12,3̃4̃
t
(0)

125̄6̄
t
(0)

65˜̄3˜̄4
, T

(0)

12˜̄5˜̄6
T

(0)

6̃5̃˜̄3˜̄4
= −Υ (1) ◦̃

12,3̃4̃
t
(0)

12˜̄5˜̄6
t
(0)

6̃5̃˜̄3˜̄4
. (6.30)

The coefficient functions evaluate to

π2

4E
t
(0)

125̄6̄
t
(0)

65˜̄3˜̄4
= −iπ2

(
ieiβ

eiβ − 1
− i(E +m)

2E

)
t
(0)

12˜̄3˜̄4
,

π2

4E
t
(0)

12˜̄5˜̄6
t
(0)

6̃5̃˜̄3˜̄4
= +iπ2

(
ieiβ

eiβ − eiα
− i(E +m)

2E

)
t
(0)

12˜̄3˜̄4
. (6.31)

Note that again there are two poles with residues proportional to the tree-level amplitude.
Here the poles originate from the two different terms in the integrand. It is not entirely
clear how to perform the integral over the poles. For practical purposes, let us assume a
principal value prescription. The unitarity integral then evaluates to

− iT (1)

12˜̄3˜̄4
+ i
(
T

(1)

4̃3̃2̄1̄

)∗ = − iπ
2(E +m)〈3̄4̄〉

2E

(
Υ

(1) ◦
12,3̃4̃

− Υ (1) ◦̃
12,3̃4̃

)
, (6.32)

In the third integrand of (6.14) we find a single color structure

T
(0)

12̃˜̄56̄
T

(0)

65̃˜̄34̄
= T

12̃5̄˜̄6
T

6̃5˜̄34̄
= Υ

(1) �
14,2̃3̃

t
(0)

12̃˜̄56̄
t
(0)

65̃˜̄34̄
. (6.33)

The coefficient function yields

π2

4E
t
(0)

12̃˜̄56̄
t
(0)

65̃˜̄34̄
= iπ2

(
ieiβ

eiβ − 1
− ieiβ

eiβ − eiα

)
t
(0)

12̃˜̄34̄
. (6.34)

Here both poles are present and there is no constant piece. The integral thus
vanishes exactly

− iT (1)

12˜̄3˜̄4
+ i
(
T

(1)

4̃3̃2̄1̄

)∗ = 0, (6.35)

Finally we would like to mention the curious fact that all three integrals vanish for
model with N = 5, 6, 8 extended supersymmetry where untwisted and twisted fields are
equivalent Υ (1) ◦ = Υ (1) ◦̃

− iT (1)

123̄4̄
+ i
(
T

(1)

432̄1̄

)∗ = −iT (1)

12˜̄3˜̄4
+ i
(
T

(1)

4̃3̃2̄1̄

)∗ = −iT (1)

12̃˜̄34̄
+ i
(
T

(1)

43̃˜̄21̄

)∗ = 0. (6.36)
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It implies a remarkable feature that the scattering amplitudes at one loop are free from
unitarity cuts. Moreover the field theory calculations in sections 5.3 and 5.4 suggest that
the one-loop amplitudes vanish altogether T (1) = 0. We shall discuss the further implica-
tions below.

6.6 Two-loop puzzle

The result of vanishing one-loop unitarity cuts (6.36) in N = 5, 6, 8 supersymmetric models
leads to a puzzle. The point is that the one-loop amplitudes must be rational functions of
the momenta which in (highly) supersymmetric theories often implies that the amplitudes
T (1) vanish altogether. Our field theory computations in section 5.4 confirm this result for
our model. In this case, however, unitarity (6.13) implies that the two-loop amplitudes are
merely rational functions. Blindly following the argument leads to no loop corrections at
all which is hard to believe.

There are good reasons to believe that the two-loop amplitudes from field theory are
neither zero nor merely rational functions (cf. the discussion in the conclusions). This
also leads to a much more realistic pattern of non-trivial corrections at higher loop orders.
However, how does this match with our observation of vanishing one-loop contributions?
The point is perhaps that our model does suffer from IR divergences in spite of having
only massive physical particles. The zero mode of the Chern-Simons gauge field appears to
cause the IR problems and in the above discussions we have seen several instances of such
singularities. For example there are obvious singularities at coincident momenta in the tree
level scattering amplitudes, (5.15), due to the singular behavior of the gluon propagator
and related subtleties in the total cross section (6.25), (6.26). The singularities effectively
require to regularize the model before computing quantum corrections.

The most reliable regulator arguably is dimensional regularization/reduction where
loop integrals are performed in a spacetime of dimension D = 3 − 2ε. Our results then
imply merely that T (1) = 0 +O(ε). The integrand of the two-loop unitarity relation must
be suppressed likewise T (0)T (1) = 0 + O(ε). However, the integral can very well produce
1/ε divergent terms such that the two-loop unitarity integral is finite

∫
T (0)T (1) = O(ε0)

(or even divergent).
It would be very desirable to perform a two-loop computation in dimensional regular-

ization based on both field theory and unitarity, and consequently compare the two results.

7 Conclusions

In this paper we have considered the spacetime S-matrices of various supersymmetric
Chern-Simons matter theories focussing on the mass deformed N ≥ 4 theories whose
super-Poincaré group contains the supergroup PSU(2|2). We have presented the tree-level
and one-loop four particle amplitudes derived using both symmetry arguments and explicit
perturbative calculations. This extended PSU(2|2) symmetry group is almost the same as
that which occurs in the light-cone gauge fixed worldsheet theory of strings in AdS5 × S5

or, equivalently, as the group of symmetries preserved by the ferromagnetic vacuum in the
spin chain picture of maximally supersymmetric four dimensional Yang-Mills. As in that
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context, the superalgebra greatly constrains the two-to-two S-matrix as it interrelates all
elements and determines the entire matrix structure up to an overall factor. This leads to
the intriguing observation that the two-body spacetime S-matrix of these three-dimensional
Chern-Simons matter theories is the same as the two-dimensional spin-chain/worldsheet
S-matrix that plays such a central role in the AdS/CFT correspondence. Furthermore this
S-matrix is known to be equivalent to Shastry’s R-matrix for the Hubbard model [32]. In
many respects this similarity is purely formal and the kinematics are obviously quite differ-
ent. For example, due to the different kinematical structure the Chern-Simons spacetime
S-matrix, unlike the two-dimensional integrable S-matrices, does not satisfy the Yang-
Baxter equation. Nonetheless it is certainly tempting to ask how far this analogy may be
extended and whether there are structures in common with the integrable systems if only
for certain kinematical regimes.

That all four particle scattering amplitudes should be related is perhaps not surprising
for a theory with extended supersymmetry, indeed in four-dimensional N = 4 Yang-Mills
super-Ward identities imply similar relations. For the three-dimensional Chern-Simons
theories with additional twisted matter there are of course additional unrelated amplitudes
though in the cases where the supersymmetry is extended to N = 5, 6 or 8 there are further
relations between amplitudes. For the general N ≥ 4 case we have fixed, by explicit
calculation, the tree level contribution to the overall factor undetermined by the global
symmetries. We have discussed in detail the color structures that occur in the perturbative
calculations as, especially beyond tree level, these calculations are substantially simplified
by separately treating the color and kinematical contributions. Having the color structure
in hand one can focus on the color ordered amplitudes, which in turn can be calculated
efficiently using unitarity methods (whose validity we explicitly verified at one-loop).

For generic N = 4 theories we find a one-loop contribution to the overall prefactor
corresponding to a massive bubble diagram and, interestingly, when we include additional
twisted matter we find an identical contribution but with the opposite sign. Thus when the
twisted and untwisted matter are in the same gauge group representations, such as in the
N = 5, 6, 8 theories, we find that all the one-loop amplitudes vanish. It is not immediately
clear what is the physical origin of this cancellation however it is plausible to assume that in
these cases there is an additional discrete symmetry related to the exchange of twisted and
untwisted matter that explains this seeming coincidence; if this is so it is not unreasonable
to ask whether this continues at higher odd orders in the perturbative expansion. However
before going to three loops there remains the question of how to find non-trivial two-loop
scattering; naive application of the unitarity method implies the vanishing of the two-loop
amplitudes as a consequence of the vanishing of all one-loop amplitudes. In order to solve
this puzzle it would be worthwhile to carry out an explicit two-loop calculation either using
unitarity methods, but being careful to keep higher orders in the dimensional regularization
parameter ε, or using off-shell methods.

Taking the mass deformation to zero appears to be smooth limit for all the physical
quantities we have calculated; in particular the tree level S-matrix elements written in
spinor notation are essentially unchanged and the ansatz for the S-matrix is thus still
valid though there may additional relations between to the elements due to extra hidden

– 51 –



J
H
E
P
0
6
(
2
0
0
9
)
0
4
5

symmetries. Of course one must now deal with the additional IR-divergences that arise at
one-loop due to the massless matter fields but for the N = 5, 6, 8 cases the one-loop result
is still vanishing. In this limit the theories we consider are in one-to-one correspondence
with N ≥ 4 superconformal Chern-Simons theories which connects our results to the
AdS4/CFT3 correspondence. In this context it is obvious to ask whether one can find, for
the planar N = 6 theory, a similar relationship between scattering amplitudes and Wilson
loops as was found in the N = 4 SYM/AdS5 × S5 case. On general grounds [46, 47] we
certainly expect that the IR asymptotics of the scattering amplitudes should be related to
the behavior of light-like Wilson loops with a cusp which for conformal theories is related
to the anomalous dimensions of specific twist operators [48] (see also [49, 50, 51, 4]).
Of course for N = 4 Yang-Mills the relationship between amplitudes and Wilson loops
goes beyond the IR divergent piece to include the finite contributions. The four particle
amplitudes display an iterative structure in perturbation theory which can be combined
into an all order exponential form, the finite piece of which is also governed by the cusp
anomalous dimension [47, 52]. It would be interesting to see if the same is true for the
Chern-Simons theory or indeed whether the even more general relation between Wilson
loops and MHV amplitudes, see for example [2], can be generalized. A moderate indication
is that the NLO scattering amplitudes vanish identically for N > 4 SCS and the same is
true for NLO Wilson loops [53], see also [54]. Relatedly it may be worthwhile to look
for a version of the dual conformal symmetry found in four-dimensional amplitudes [6].
Given this possible relation between scattering amplitudes/Wilson loops/twist operators
and previous results [20, 21, 38] on the anomalous dimensions of twist operators in the
planar limit we might expect that the two-loop scattering amplitudes in N = 6 CS are
related to one-loop amplitudes in four-dimensional N = 4 YM. Another hint that this may
indeed be the case is the similarity of the one-loop correction to the CS gluon propagator
to the YM propagator. Furthermore, at strong coupling the fact that the relevant, non-
compact, part of the geometry dual to the N = 6 theory, [20], is similar leads one to believe
that such a relationship between the four-dimensional YM and three dimensional CS is
plausible. Certainly in the analysis of the spectrum of spinning strings/twist operators
marked similarity to the AdS5 × S5 case is apparent and the proof of the relationship
between open strings dual to Wilson loops and spinning strings dual to twist operators
via analytic continuation [50] goes through exactly as in the AdS5 geometry. However
while the classical string solution dual to four particle scattering amplitudes is almost
identical [1, 5] it should be mentioned that the full geometry felt by the string, particularly
for the fermions, is different and it is not certain that the arguments relating Wilson loops
to scattering amplitudes at strong coupling via (fermionic) T-duality will be valid in this
theory [1, 23, 22].

The particle representations that are used in the present paper are merely the simplest
representations of the symmetry algebra. It is conceivable that the mass-deformed CS
model has bound states which transform in larger representations. It might be interesting
to determine the spectrum of such composite particles and also compute their scattering
matrices (by means of unitarity).
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Finally, in attempting to answer questions involving higher loops, amplitudes involving
larger numbers of particles or bound states the global symmetries will naturally be less
restrictive and there will be more independent elements. It may therefore be useful to see
whether one can adapt the methods of recursion relations [10], generalized unitarity [12]
and the use of complex momenta [8, 13] to the current context.

The analysis carried out in this paper raises several interesting questions about SCS
theories, their relationship to Yang-Mills theories and the AdS4/CFT3 correspondence.
There are of course, several issues pertaining specifically to a better understanding scat-
tering processes in N ≥ 4 SCS theories that require further studies. As explained in the
preceding sections, the resolution of the puzzle regarding a two loop contribution to the
scattering matrix that is neither zero nor purely rational, and an understanding of the re-
lationship between scattering amplitudes and Wilson loops, would yield vital insights into
the gauge theories in question as well as the AdS4/CFT3 correspondence.

Looking beyond the immediate problems and puzzles posed by this paper, we would like
to point out that possible connections between mass deformations of Chern-Simons models
and Yang-Mills theories in three spacetime dimensions, are worth investigating in greater
detail. In the case of massless Chern-Simons models, both the maximally supersymmetric
N = 8 BLG theory, as well as the non-supersymmetric pure Chern-Simons theory are
expected to describe the strongly coupled dynamics of N = 8 and N = 0 Yang-Mills
theories respectively. In the later case, the vacuum wave functionals of the Chern-Simons
theory, namely the Wess-Zumino-Witten model, and that of the strongly coupled gluonic
theory are known to be the same: a fact that can be established using a gauge invariant
Hamiltonian formulation of pure Yang-Mills theory [55]. In the maximally supersymmetric
case, the strongly coupled Yang-Mills theory is expected to flow to the SCS theory at strong
coupling due to the standard dualities between D2 and M2 brane dynamics [56]. Direct
evidence relating the Lagrangians of the two theories via a Higgs mechanism has also been
uncovered in [57]. However, the relationship between mass-deformed SCS theories and
Yang-Mills theories, if any, remains unclear. In this context, it is worth noting that, in the
special case of three spacetime dimensions, it is possible to carry out mass-deformations
of super Yang-Mills theories on R1,2 by using a non-local, gauge invariant mass-term for
the gluons, and ordinary quadratic mass-terms for the matter fields. Appropriately mass-
deformed super Yang-Mills theories can also be shown to be related to matrix models in
plane wave type backgrounds by the methods of dimensional reduction [58]. It is thus
worth investigating if the interrelationships between massless SCS and super Yang-Mills
theories has a parallel in connections between mass deformed Chern-Simons models and
massive Yang-Mills theories of the type investigated in [58].

On a related note, it might be interesting to investigate the role of mass-deformed
algebras in constraining the spacetime physics of other gauge theories, such as N = 8
supersymmetric Yang-Mills theory on R× S2 and other related Yang-Mills Chern-Simons
theories constructed in [59, 33].
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A Conventions

A.1 Spacetime

We give a brief summary of spacetime index conventions used in this paper following the
conventions of HLLLP [16] to a large extent.

Vectors. For vector indices we choose the signature of spacetime and the antisymmetric
tensor according to

ηµν = diag(−,+,+), ηµν = diag(−,+,+), ε012 = +1. ε012 = −1. (A.1)

Spinors. We start by defining a basis of real symmetric and antisymmetric 2×2 matrices:

[σµ]αβ =

(
− 0
0 −

)
,

(
+ 0
0 −

)
,

(
0 −
− 0

)
, εαβ =

(
0 +
− 0

)
. (A.2)

The conjugate basis with lower indices is defined by σµαβ = εαγεβδσ
µ,γδ and εαβ = εαγεβδε

γδ

[σµ]αβ =

(
− 0
0 −

)
,

(
− 0
0 +

)
,

(
0 +
+ 0

)
, εαβ =

(
0 +
− 0

)
. (A.3)

If we lower only one spinor index [γµ]αβ = −εαγ [σµ]γβ = εβγ [σµ]αγ we obtain

[γµ]αβ =

(
0 +
− 0

)
,

(
0 +
+ 0

)
,

(
+ 0
0 −

)
= iσ2, σ1, σ3, (A.4)

where the latter three σk refer to the standard Pauli matrices. The gamma matrices obey
the algebra

γµγν = ηµν + εµνργρ. (A.5)

Spinors ψ will usually carry a lower spinor index ψα so that one can conveniently
multiply gamma matrices to their left, γµψ. To close off a sequence of gamma matrices
from the left one can use a spinor ψ followed by ε to raise the index ψαεαβ. Barred spinors
ψ̄ = ψ∗ε have an upper index ψ̄α = ψ∗βε

βα and one can multiply gamma matrices to their
right, ψ̄γµ.

To convert between vectors and bi-spinors we use the map

pαβ = pµσ
µ
αβ =

(
−p0 − p1 p2

p2 −p0 + p1

)
, pµ = −1

2
σαβµ pαβ. (A.6)
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Conversion from HLLLP notation. For compatibility reasons we adopt the spinor
conventions used in HLLLP [16] with the only exception of the εαβ symbol with lower
indices. The reason is that lowering both indices of εαβ with two εHLLLP

αβ according to the
prescription in [16] leads to −εHLLLP

αβ . We thus choose the opposite sign for εαβ. This is
consistent with the fact that det ε = +1: The relative normalization of totally antisym-
metric tensors ε with upper and lower indices should be determined by the determinant of
the matrix to raise or lower indices (here: the same ε).

In order to avoid sign confusions we will always raise or lower spinor indices explicitly
by means of ε tensors. All the symbols will have a definite position of spinor indices; we
commonly use lower indices which are contracted by εαβ.

Thus, the conversion from HLLLP [16] to our notation consists of the following
two replacements

ψαHLLLP = εαβψβ, εHLLLP
αβ = −εαβ. (A.7)

A.2 Polarization spinors

Consider now the Dirac equation

(γµ∂µ −m)ψ = 0. (A.8)

It is solved by ψ = exp(+ipµxµ)u(+p) and ψ = exp(−ipµxµ)u(−p) with the polariza-
tion spinors

u(p) =
1√

p0 − p1

(
p2 − im
p1 − p0

)
, v(p) =

1√
p0 − p1

(
p2 + im

p1 − p0

)
. (A.9)

These are normalized such that

vα(p)uβ(p) = −pαβ − imεαβ. (A.10)

Obviously, the Dirac equation with opposite mass

(γµ∂µ +m)ψ̃ = 0 (A.11)

has the solutions ψ̃ = exp(+ipµxµ)v(+p) and ψ̃ = exp(−ipµxµ)v(−p) with u replaced by
v interchanged. By construction, it is also clear that for inverted momentum one obtains

u(−p) = i sign(p0) v(p), v(−p) = i sign(p0)u(p). (A.12)

Finally, let us note that the two polarization spinors are related complex conjugation

u(p)∗ = −i u(−p∗), v(p)∗ = −i v(−p∗). (A.13)

A.3 Completeness relations and conversion

We list two completeness relations for symmetrized bispinors

σαβµ σµγδ = −δαγ δ
β
δ − δ

α
δ δ

β
γ , εαβεγδ = δαγ δ

β
δ − δ

α
δ δ

β
γ . (A.14)
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These can be used to convert between vectors and symmetric bispinors

aαβ = σµαβaµ, aµ = −1
2
σαβµ aαβ. (A.15)

Furthermore in three dimensions vectors and two-forms are equivalent

aρ =
1
2
εµνρa

µν , aµν = −εµνρaρ. (A.16)

Thus we can also convert directly between symmetric bispinors and two-forms

aαβ = −1
2
σµαγε

γδσνδβaµν , aµν = −1
2
σαγµ εγδσ

δβ
ν aαβ. (A.17)

B The N = 4 Chern-Simons model

In this appendix we define the N = 4 supersymmetric Chern-Simons model and give a
summary of its symmetries.

B.1 Definitions

We start by listing the basic fields, symbols and indices that appear in the model.

Types of indices.

• M,N,P, . . .: gauge adjoint indices,

• A,B,C, . . .: gauge untwisted representation indices,

• Ã, B̃, C̃, . . .: gauge twisted representation indices,

• α, β, γ, . . .: spacetime spinor indices (cf. appendix A.1),

• µ, ν, ρ, . . .: spacetime vector indices (cf. appendix A.1),

• a, b, c, . . .: flavor indices of first su(2),

• ȧ, ḃ, ċ, . . .: flavor indices of second su(2),

• ã, b̃, c̃, . . .: flavor indices of third su(2),

• â, b̂, ĉ, . . .: flavor indices of fourth su(2).

Gauge invariant symbols.

• gauge algebra structure constants FMNP = −FMPN ,

• gauge algebra (Cartan-Killing) metric KMN = KNM ,

• untwisted (twisted) representation TAMB (T̃ Ã
MB̃

),

• untwisted (twisted) moments MM
AB = MM

BA (M̃M
ÃB̃

= M̃M
B̃Ã

),
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• untwisted (twisted) metric LAB = −LBA (L̃ÃB̃ = −L̃B̃Ã).

The untwisted structure constants FMNP , T
A
MB,M

M
AB obey the Jacobi identities of a

Lie superalgebra

0 = FMRNF
R
PQ + FMRPF

R
QN + FMRQF

R
NP ,

0 = TACMT
C
NB − TACNTCMB + TAPBF

P
MN ,

0 = FMNPM
P
AB +MM

ACT
C
NB +MM

BCT
C
NA,

0 = TAMBM
M
CD + TAMCM

M
DB + TAMDM

M
BC . (B.1)

Furthermore the compatibility of structure constants and metric implies the relation

LACT
C
MB = KMNM

N
AB. (B.2)

The twisted constants FMNP , T̃
Ã
MB̃

, M̃M
ÃB̃
, L̃ÃB̃ obey the same Lie superalgebra relations.

The Lie superalgebra for the twisted sector need not be isomorphic to the one for the
“untwisted” sector; the even parts defined through FMNP must be isomorphic, but the odd
parts T̃ Ã

MB̃
, M̃M

ÃB̃
, L̃ÃB̃ can differ.

Fields and combinations. The most general non-abelian model is based upon the fol-
lowing five types of fields:

• gauge field AMαβ = σµαβA
M
µ ,

• untwisted scalars φAa and fermions ψA
αḃ

,

• twisted scalars φ̃Ãȧ and fermions ψ̃Ãαb.

The following combinations of fields (field strength, covariant derivatives, moments, cur-
rents) have proven useful

FMαβ = −1
2
εγδ∂αγAMβδ −

1
2
εγδ∂βγAMαδ −

1
2
εγδFMNPANαγAPβδ,

DαβXA = ∂αβXA + TAMBAMαβXB, DαβX Ã = ∂αβX Ã + T̃ Ã
MB̃
AMαβX B̃,

MM
ab = MM

ABφ
A
a φ

B
b , M̃M

ȧḃ
= M̃M

ÃB̃
φ̃Ãȧ φ̃

B̃
ḃ
,

JMαbċ = MM
ABφ

A
b ψ

B
αċ, J̃M

αḃc
= M̃M

ÃB̃
φ̃Ã
ḃ
ψ̃B̃αc. (B.3)

With respect to the conventions in [16] we have rescaled the fields for our convenience
as follows:

φAa → +
√

4π qAa , φ̃Ãȧ → −
√

4π q̃Ãȧ ,

ψA
αḃ
→ +

√
4π ψA

αḃ
, ψ̃Ãαb → +

√
4π ψ̃Ãαb. (B.4)
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B.2 Action

The action which appears in the path integral as eiS is defined as S =
∫
d3xL with

the Lagrangian:

(4π/k)L = −1
2
KMNε

βγεδκελαAMαβ∂γδANκλ

− 1
6
KMNF

N
PQε

βγεδκελαAMαβAPγδA
Q
κλ

+
1
4
LABε

abεγκεδλDγδφAaDκλφBb +
1
4
L̃ÃB̃ε

ȧḃεγκεδλDγδφ̃ÃȧDκλφ̃B̃ḃ

− 1
2
m2LABε

abφAa φ
B
b − 1

2
m2L̃ÃB̃ε

ȧḃφ̃Ãȧ φ̃
B̃
ḃ

+
i

2
LABε

ȧḃεγκελδψAγȧDκλψBδḃ +
i

2
L̃ÃB̃ε

abεγκελδψ̃ÃγaDκλψ̃B̃δb

+
i

2
mLABε

ȧḃεγδψAγȧψ
B
δḃ

− i

2
mL̃ÃB̃ε

abεγδψ̃Ãγaψ̃
B̃
δb

+
i

4
KMNε

abεċḋεκλJMκaċJNλbḋ +
i

4
KMNε

ȧḃεcdεκλJ̃MκȧcJ̃Nλḃd

+ iKMNε
adεḃċεκλJM

κaḃ
J̃Nλċd

− i

4
LACT

C
MBε

ȧċεḃḋεκλM̃M
ȧḃ
ψAκċψ

B
λḋ

− i

4
L̃ÃC̃ T̃

C̃
MB̃

εacεbdεκλMM
ab ψ̃

Ã
κcψ̃

B̃
λd

+
1
6
mKMNε

bcεdaMM
abMN

cd − 1
6
mKMNε

ḃċεḋȧM̃M
ȧḃ
M̃N

ċḋ

+
1
96
KMNF

N
PQε

bcεdeεfaMM
abMP

cdM
Q
ef +

1
96
KMNF

N
PQε

ḃċεḋėεḟ ȧM̃M
ȧḃ
M̃P

ċḋ
M̃Q

ėḟ

+
1
16
L̃C̃D̃T̃

C̃
MÃ

T̃ D̃
NB̃

εȧḃεceεdfMM
cdMN

ef φ̃
Ã
ȧ φ̃

B̃
ḃ

+
1
16
LCDT

C
MAT

D
NBε

abεċėεḋḟM̃M
ċḋ
M̃N

ėḟ
φAa φ

B
b .

(B.5)

This is equivalent to the action presented in [16] after using the dictionary in (B.4).

B.3 Symmetries

Here we collect the global symmetries of the model.

Rotations. The su(2)⊕su(2) flavor and sl(2) Lorentz rotations act on the corresponding
indices of some field X as follows

RabXc =
i

2
εbcXa +

i

2
εacXb,

ṘȧḃXċ =
i

2
εḃċXȧ +

i

2
εȧċXḃ,

LαβXγ =
1
2
εβγXα +

1
2
εαγXβ. (B.6)

Translations. The momentum generators act by covariant derivatives

PαβXA = −iDαβXA,

PαβX Ã = −iDαβX Ã,

PαβAMγδ =
i

2
εβδFMαγ +

i

2
εβγFMαδ +

i

2
εαδFMβγ +

i

2
εαγFMβδ . (B.7)
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Supersymmetry. Supersymmetry generators act on the fields according to the rules

Qαbċφ
A
d = εbdψ

A
αċ,

Qαbċφ̃
Ã
ḋ

= εċḋψ̃
Ã
αb,

Qαbċψ
A
δė = iεċė

(
Dαδ −mεαδ

)
φAb + iεαδ

(
1
6
MM

bf ε
fgεċė −

1
2
δgbM̃

M
ċė

)
TAMBφ

B
g ,

Qαbċψ̃
Ã
δe = iεbe

(
Dαδ +mεαδ

)
φ̃Ãċ + iεαδ

(
1
6
εbeM̃M

ċḟ
εḟ ġ − 1

2
MM

be δ
ġ
ċ

)
T̃ Ã
MB̃

φ̃B̃ġ ,

QαbċAAδε =
1
2
εαδJMεbċ +

1
2
εαεJMδbċ +

1
2
εαδJ̃Mεċb +

1
2
εαεJ̃Mδċb. (B.8)

The supersymmetry variation δ of [16] corresponds to the action of δ = iηαbċQαbċ with a
fermionic field η. Lowering some of the indices of this field yields

ηαd
ċ = ηαbċεbd, ηαbḋ = ηαbċεċḋ, ηδ

b
ė = ηαbċεαδεċė, ηδe

ċ = ηαbċεαδεbe. (B.9)

B.4 Interacting symmetry algebra

The symmetry algebra takes the form described in section 2.2. However, it is well known
that the symmetry algebra in an interacting gauge theory closes only on shell and modulo
(field-dependent) gauge transformations. The additional terms form an ideal of the algebra
and thus can be factored out consistently by acting only on on-shell, gauge-invariant states.

Commutators. The additional terms in the commutators can be written explicitly as

{Qαbċ,Qδeḟ} = εbeεċḟ (+Pαδ + Eαδ)

+ εαδεċḟ

(
− 2mRbe −

1
2
G[Mbe] + Ebe

)
+ εαδεbe

(
+ 2mṘċḟ −

1
2
G̃[M̃ċḟ ] + Eċḟ

)
,

[Pαβ,Qγdė] =
1
2
εβγG[Jαdė + J̃αėd] +

1
2
εαγG[Jβdė + J̃βėd],

[Pαβ,Pγδ] =
i

2
εβδG[Fαγ ] +

i

2
εβγG[Fαδ] +

i

2
εαδG[Fβγ ] +

i

2
εαγG[Fβδ]. (B.10)

The generator E annihilates on-shell fields and the generators G[X ] are field-dependent
gauge transformations.

Gauge transformations. The generators G[X ] are gauge variations with variation pa-
rameter XM

G[X ]YA = −iTAMBXMYB,
G[X ]YÃ = −iT̃ Ã

MB̃
XMYB̃,

G[X ]AMαβ = iDαβXM . (B.11)

The gauge transformation generate an ideal of the full symmetry algebra: One can show
that commutators of gauge transformations close onto gauge transformations, explicitly[

J,G[X ]
]

= G[JX ]. (B.12)
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Equation of motion generators. The action of the generators E[X ] is defined as

Eαβψ
A
γḋ

=
i

2
εβγE[ψA

αḋ
] +

i

2
εαγE[ψA

βḋ
],

Eαβψ̃
Ã
γd =

i

2
εβγE[ψ̃Aαd] +

i

2
εαγE[ψ̃Aβd],

EαβAMγδ = − i
2
εβγE[AMαδ]−

i

2
εβδE[AMαγ ]− i

2
εαγE[AMβδ]−

i

2
εαδE[AMβγ ],

Eabψ̃
Ã
γd = − i

2
εbdE[ψ̃Ãγa]−

i

2
εadE[ψ̃Ãγb],

Eȧḃψ
A
γḋ

= − i
2
εḃḋE[ψAγȧ]−

i

2
εȧḋE[ψA

γḃ
]. (B.13)

They annihilate on-shell fields because E[X ] = 0 is defined as the equation of motion for
the field X

E[φAa ] =
1
2
εγκεδλDγδDκλφAa −m2φAa

+
i

2
εċḋεκλTANBψ

B
κċJNλaḋ + iεḃċεκλTANBψ

B
κḃ
J̃Nλċa

− i

2
M̃M
C̄D̄ε

bdεκλTAMBφ
B
b ψ̃

C̄
κaψ̃

D̄
λd +

2
3
mεbdTANBφ

B
bMN

ad

+
1
16
FNPQT

A
NBε

bcεdeMP
abMcdφ

B
e +

1
4
M̃M
ĀD̄T̃

D̄
N B̄ε

bfTAMBφ
B
bMM

af φ̃
Ā
ċ φ̃

B̄
ḋ

+
1
8
LCDT

CA
M TDN Bε

ċėεḋḟM̃M
ċḋ
M̃N

ėḟ
φBa ,

E[φ̃Ãȧ ] =
1
2
εγκεδλDγδDκλφAȧ −m2φAȧ

+
i

2
εcdεκλT̃ ĀN B̄ψ̃

B̄
κcJ̃Nλȧd + iεbcεκλT̃ ĀN B̄ψ̃

B̄
κbJNλcȧ

− i

2
MM
CDε

ḃḋεκλT̃ ĀM B̄φ̃
B̄
ḃ
ψCκȧψ

D
λḋ
− 2

3
mεḃḋT̃ ĀN B̄φ̃

B̄
ḃ
M̃N

ȧḋ

+
1
16
FNPQT̃

Ā
N B̄ε

ḃċεḋėM̃P
ȧḃ
M̃ċḋφ̃

B̄
ė +

1
4
MM
ADT

D
N Bε

ḃḟ T̃ ĀM B̄φ̃
B̄
ḃ
M̃M

ȧḟ
φAc φ

B
d

+
1
8
L̃C̄D̄T̃

C̄Ā
M T̃ D̄N B̄ε

ceεdfMM
cdMN

ef φ̃
B̄
ȧ ,

E[ψA
αḃ

] = εγδDαγψAδḃ +mψA
αḃ

+ TAMB(JM
αcḃ

+ J̃M
αḃc

)εcdφBd ,

E[ψ̃Ãαb] = εγδDαγψ̃Ãδb −mψ̃Ãαb + T̃ Ã
MB̃

(JMαbċ + J̃Mαċb)εċḋφ̃B̃ḋ ,

E[AMαβ] = FMαβ +
1
2
MM
ABε

cdφAc DαβφBd +
1
2
M̃M
ÃB̃
εċḋφ̃Ãċ Dαβφ̃B̃ḋ

+
i

2
MM
ABε

ċḋψAαċψ
B
βḋ

+
i

2
M̃M
ÃB̃
εcdψ̃Ãαcψ̃

B̃
βd. (B.14)

The commutators of the generators E close onto further generators E which annihilate all
on-shell fields. Thus they also form an ideal of the symmetry algebra.
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Oscillator expansion. We use the following oscillator expansions to the fields, using
the basis of solutions found in (A.2):

φAa (x) =
∫

d2p√
2E(p)

(
e−ip·xaAa (p) + eip·xaA†a (p)

)
φ̃Aȧ (x) =

∫
d2p√
2E(p)

(
e−ip·xãAȧ (p) + eip·xãA†ȧ (p)

)
ψAȧ (x) =

∫
d2p√
2E(p)

(
u(p)eip·xb†Aȧ (p) + v(p)e−ip·xbAȧ (p)

)
ψ̃Aa (x) =

∫
d2p√
2E(p)

(
v(p)eip·xb̃†Aa (p) + u(p)e−ip·xb̃Aa (p)

)
. (B.15)

φ(x) and ψ(x) are the bosonic and fermionic fields in the action found in appendix B and the
action (B.5). Requiring that the linearized N = 4 algebra be realized on bosonic/fermionic
oscillator states, leads to (2.9). We note that the positive and negative energy frequency
parts for the twisted fermions are related to the conjugates of those for the untwisted ones.
This has to do with the fact that the twisted fermions have a negative mass compared to
the untwisted ones.
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